Cargando…

Estrogen Receptor Alpha Distribution and Expression in the Social Neural Network of Monogamous and Polygynous Peromyscus

In microtine and dwarf hamsters low levels of estrogen receptor alpha (ERα) in the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) play a critical role in the expression of social monogamy in males, which is characterized by high levels of affiliation and low levels of aggression...

Descripción completa

Detalles Bibliográficos
Autor principal: Cushing, Bruce S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784910/
https://www.ncbi.nlm.nih.gov/pubmed/26959827
http://dx.doi.org/10.1371/journal.pone.0150373
Descripción
Sumario:In microtine and dwarf hamsters low levels of estrogen receptor alpha (ERα) in the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) play a critical role in the expression of social monogamy in males, which is characterized by high levels of affiliation and low levels of aggression. In contrast, monogamous Peromyscus males display high levels of aggression and affiliative behavior with high levels of testosterone and aromatase activity. Suggesting the hypothesis that in Peromyscus ERα expression will be positively correlated with high levels of male prosocial behavior and aggression. ERα expression was compared within the social neural network, including the posterior medial BST, MeA posterodorsal, medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and arcuate nucleus in two monogamous species, P. californicus and P. polionotus, and two polygynous species, P. leucopus and P. maniculatus. The results supported the prediction, with male P. polionotus and P. californicus expressing higher levels of ERα in the BST than their polygynous counter parts, and ERα expression was sexually dimorphic in the polygynous species, with females expressing significantly more than males in the BST in both polygynous species and in the MeA in P. leucopus. Peromyscus ERα expression also differed from rats, mice and microtines as in neither the MPOA nor the VMH was ERα sexually dimorphic. The results supported the hypothesis that higher levels of ERα are associated with monogamy in Peromyscus and that differential expression of ERα occurs in the same regions of the brains regardless of whether high or low expression is associated with social monogamy. Also discussed are possible mechanisms regulating this differential relationship.