Cargando…
Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity
Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amylo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785275/ https://www.ncbi.nlm.nih.gov/pubmed/27019755 http://dx.doi.org/10.1155/2016/7969272 |
_version_ | 1782420377736052736 |
---|---|
author | Jang, Sung-Soo Chung, Hee Jung |
author_facet | Jang, Sung-Soo Chung, Hee Jung |
author_sort | Jang, Sung-Soo |
collection | PubMed |
description | Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. |
format | Online Article Text |
id | pubmed-4785275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-47852752016-03-27 Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity Jang, Sung-Soo Chung, Hee Jung Neural Plast Review Article Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. Hindawi Publishing Corporation 2016 2016-02-25 /pmc/articles/PMC4785275/ /pubmed/27019755 http://dx.doi.org/10.1155/2016/7969272 Text en Copyright © 2016 S.-S. Jang and H. J. Chung. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Jang, Sung-Soo Chung, Hee Jung Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title | Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title_full | Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title_fullStr | Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title_full_unstemmed | Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title_short | Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity |
title_sort | emerging link between alzheimer's disease and homeostatic synaptic plasticity |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785275/ https://www.ncbi.nlm.nih.gov/pubmed/27019755 http://dx.doi.org/10.1155/2016/7969272 |
work_keys_str_mv | AT jangsungsoo emerginglinkbetweenalzheimersdiseaseandhomeostaticsynapticplasticity AT chungheejung emerginglinkbetweenalzheimersdiseaseandhomeostaticsynapticplasticity |