Cargando…

Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters

[Image: see text] Semiempirical orthogonalization-corrected methods (OM1, OM2, and OM3) go beyond the standard MNDO model by explicitly including additional interactions into the Fock matrix in an approximate manner (Pauli repulsion, penetration effects, and core–valence interactions), which yields...

Descripción completa

Detalles Bibliográficos
Autores principales: Dral, Pavlo O., Wu, Xin, Spörkel, Lasse, Koslowski, Axel, Weber, Wolfgang, Steiger, Rainer, Scholten, Mirjam, Thiel, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785507/
https://www.ncbi.nlm.nih.gov/pubmed/26771204
http://dx.doi.org/10.1021/acs.jctc.5b01046
_version_ 1782420410436943872
author Dral, Pavlo O.
Wu, Xin
Spörkel, Lasse
Koslowski, Axel
Weber, Wolfgang
Steiger, Rainer
Scholten, Mirjam
Thiel, Walter
author_facet Dral, Pavlo O.
Wu, Xin
Spörkel, Lasse
Koslowski, Axel
Weber, Wolfgang
Steiger, Rainer
Scholten, Mirjam
Thiel, Walter
author_sort Dral, Pavlo O.
collection PubMed
description [Image: see text] Semiempirical orthogonalization-corrected methods (OM1, OM2, and OM3) go beyond the standard MNDO model by explicitly including additional interactions into the Fock matrix in an approximate manner (Pauli repulsion, penetration effects, and core–valence interactions), which yields systematic improvements both for ground-state and excited-state properties. In this Article, we describe the underlying theoretical formalism of the OMx methods and their implementation in full detail, and we report all relevant OMx parameters for hydrogen, carbon, nitrogen, oxygen, and fluorine. For a standard set of mostly organic molecules commonly used in semiempirical method development, the OMx results are found to be superior to those from standard MNDO-type methods. Parametrized Grimme-type dispersion corrections can be added to OM2 and OM3 energies to provide a realistic treatment of noncovalent interaction energies, as demonstrated for the complexes in the S22 and S66×8 test sets.
format Online
Article
Text
id pubmed-4785507
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-47855072016-03-11 Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters Dral, Pavlo O. Wu, Xin Spörkel, Lasse Koslowski, Axel Weber, Wolfgang Steiger, Rainer Scholten, Mirjam Thiel, Walter J Chem Theory Comput [Image: see text] Semiempirical orthogonalization-corrected methods (OM1, OM2, and OM3) go beyond the standard MNDO model by explicitly including additional interactions into the Fock matrix in an approximate manner (Pauli repulsion, penetration effects, and core–valence interactions), which yields systematic improvements both for ground-state and excited-state properties. In this Article, we describe the underlying theoretical formalism of the OMx methods and their implementation in full detail, and we report all relevant OMx parameters for hydrogen, carbon, nitrogen, oxygen, and fluorine. For a standard set of mostly organic molecules commonly used in semiempirical method development, the OMx results are found to be superior to those from standard MNDO-type methods. Parametrized Grimme-type dispersion corrections can be added to OM2 and OM3 energies to provide a realistic treatment of noncovalent interaction energies, as demonstrated for the complexes in the S22 and S66×8 test sets. American Chemical Society 2016-01-15 2016-03-08 /pmc/articles/PMC4785507/ /pubmed/26771204 http://dx.doi.org/10.1021/acs.jctc.5b01046 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Dral, Pavlo O.
Wu, Xin
Spörkel, Lasse
Koslowski, Axel
Weber, Wolfgang
Steiger, Rainer
Scholten, Mirjam
Thiel, Walter
Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title_full Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title_fullStr Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title_full_unstemmed Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title_short Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters
title_sort semiempirical quantum-chemical orthogonalization-corrected methods: theory, implementation, and parameters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785507/
https://www.ncbi.nlm.nih.gov/pubmed/26771204
http://dx.doi.org/10.1021/acs.jctc.5b01046
work_keys_str_mv AT dralpavloo semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT wuxin semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT sporkellasse semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT koslowskiaxel semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT weberwolfgang semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT steigerrainer semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT scholtenmirjam semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters
AT thielwalter semiempiricalquantumchemicalorthogonalizationcorrectedmethodstheoryimplementationandparameters