Cargando…

NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production...

Descripción completa

Detalles Bibliográficos
Autores principales: Hawkins, Kate E., Joy, Shona, Delhove, Juliette M.K.M., Kotiadis, Vassilios N., Fernandez, Emilio, Fitzpatrick, Lorna M., Whiteford, James R., King, Peter J., Bolanos, Juan P., Duchen, Michael R., Waddington, Simon N., McKay, Tristan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785773/
https://www.ncbi.nlm.nih.gov/pubmed/26904936
http://dx.doi.org/10.1016/j.celrep.2016.02.003
_version_ 1782420466181341184
author Hawkins, Kate E.
Joy, Shona
Delhove, Juliette M.K.M.
Kotiadis, Vassilios N.
Fernandez, Emilio
Fitzpatrick, Lorna M.
Whiteford, James R.
King, Peter J.
Bolanos, Juan P.
Duchen, Michael R.
Waddington, Simon N.
McKay, Tristan R.
author_facet Hawkins, Kate E.
Joy, Shona
Delhove, Juliette M.K.M.
Kotiadis, Vassilios N.
Fernandez, Emilio
Fitzpatrick, Lorna M.
Whiteford, James R.
King, Peter J.
Bolanos, Juan P.
Duchen, Michael R.
Waddington, Simon N.
McKay, Tristan R.
author_sort Hawkins, Kate E.
collection PubMed
description The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.
format Online
Article
Text
id pubmed-4785773
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-47857732016-03-22 NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming Hawkins, Kate E. Joy, Shona Delhove, Juliette M.K.M. Kotiadis, Vassilios N. Fernandez, Emilio Fitzpatrick, Lorna M. Whiteford, James R. King, Peter J. Bolanos, Juan P. Duchen, Michael R. Waddington, Simon N. McKay, Tristan R. Cell Rep Report The potential of induced pluripotent stem cells (iPSCs) in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα) activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation. Cell Press 2016-02-18 /pmc/articles/PMC4785773/ /pubmed/26904936 http://dx.doi.org/10.1016/j.celrep.2016.02.003 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Report
Hawkins, Kate E.
Joy, Shona
Delhove, Juliette M.K.M.
Kotiadis, Vassilios N.
Fernandez, Emilio
Fitzpatrick, Lorna M.
Whiteford, James R.
King, Peter J.
Bolanos, Juan P.
Duchen, Michael R.
Waddington, Simon N.
McKay, Tristan R.
NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_full NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_fullStr NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_full_unstemmed NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_short NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming
title_sort nrf2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785773/
https://www.ncbi.nlm.nih.gov/pubmed/26904936
http://dx.doi.org/10.1016/j.celrep.2016.02.003
work_keys_str_mv AT hawkinskatee nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT joyshona nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT delhovejuliettemkm nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT kotiadisvassiliosn nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT fernandezemilio nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT fitzpatricklornam nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT whitefordjamesr nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT kingpeterj nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT bolanosjuanp nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT duchenmichaelr nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT waddingtonsimonn nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming
AT mckaytristanr nrf2orchestratesthemetabolicshiftduringinducedpluripotentstemcellreprogramming