Cargando…
Predicting chemoinsensitivity in breast cancer with ’omics/digital pathology data fusion
Predicting response to treatment and disease-specific deaths are key tasks in cancer research yet there is a lack of methodologies to achieve these. Large-scale ’omics and digital pathology technologies have led to the need for effective statistical methods for data fusion to extract the most useful...
Autores principales: | Savage, Richard S., Yuan, Yinyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785962/ https://www.ncbi.nlm.nih.gov/pubmed/26998311 http://dx.doi.org/10.1098/rsos.140501 |
Ejemplares similares
-
Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis
por: Qi, Lin, et al.
Publicado: (2021) -
Patient-Specific Data Fusion Defines Prognostic Cancer Subtypes
por: Yuan, Yinyin, et al.
Publicado: (2011) -
Multi-Omic Data Interpretation to Repurpose Subtype Specific Drug Candidates for Breast Cancer
por: Turanli, Beste, et al.
Publicado: (2019) -
Multi-Omics Data Fusion via a Joint Kernel Learning Model for Cancer Subtype Discovery and Essential Gene Identification
por: Feng, Jie, et al.
Publicado: (2021) -
Multi-Omic Data Improve Prediction of Personalized Tumor Suppressors and Oncogenes
por: Sudhakar, Malvika, et al.
Publicado: (2022)