Cargando…
Identification of Dw1, a Regulator of Sorghum Stem Internode Length
Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3–4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786228/ https://www.ncbi.nlm.nih.gov/pubmed/26963094 http://dx.doi.org/10.1371/journal.pone.0151271 |
Sumario: | Sorghum is an important C4 grain and grass crop used for food, feed, forage, sugar, and biofuels. In its native Africa, sorghum landraces often grow to approximately 3–4 meters in height. Following introduction into the U.S., shorter, early flowering varieties were identified and used for production of grain. Quinby and Karper identified allelic variation at four loci designated Dw1-Dw4 that regulated plant height by altering the length of stem internodes. The current study used a map-based cloning strategy to identify the gene corresponding to Dw1. Hegari (Dw1dw2Dw3dw4) and 80M (dw1dw2Dw3dw4) were crossed and F(2) and HIF derived populations used for QTL mapping. Genetic analysis identified four QTL for internode length in this population, Dw1 on SBI-09, Dw2 on SBI-06, and QTL located on SBI-01 and SBI-07. The QTL on SBI-07 was ~3 Mbp upstream of Dw3 and interacted with Dw1. Dw1 was also found to contribute to the variation in stem weight in the population. Dw1 was fine mapped to an interval of ~33 kbp using HIFs segregating only for Dw1. A polymorphism in an exon of Sobic.009G229800 created a stop codon that truncated the encoded protein in 80M (dw1). This polymorphism was not present in Hegari (Dw1) and no other polymorphisms in the delimited Dw1 locus altered coding regions. The recessive dw1 allele found in 80M was traced to Dwarf Yellow Milo, the progenitor of grain sorghum genotypes identified as dw1. Dw1 encodes a putative membrane protein of unknown function that is highly conserved in plants. |
---|