Cargando…

Monitoring of Heart and Breathing Rates Using Dual Cameras on a Smartphone

Some smartphones have the capability to process video streams from both the front- and rear-facing cameras simultaneously. This paper proposes a new monitoring method for simultaneous estimation of heart and breathing rates using dual cameras of a smartphone. The proposed approach estimates heart ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Nam, Yunyoung, Kong, Youngsun, Reyes, Bersain, Reljin, Natasa, Chon, Ki H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786286/
https://www.ncbi.nlm.nih.gov/pubmed/26963390
http://dx.doi.org/10.1371/journal.pone.0151013
Descripción
Sumario:Some smartphones have the capability to process video streams from both the front- and rear-facing cameras simultaneously. This paper proposes a new monitoring method for simultaneous estimation of heart and breathing rates using dual cameras of a smartphone. The proposed approach estimates heart rates using a rear-facing camera, while at the same time breathing rates are estimated using a non-contact front-facing camera. For heart rate estimation, a simple application protocol is used to analyze the varying color signals of a fingertip placed in contact with the rear camera. The breathing rate is estimated from non-contact video recordings from both chest and abdominal motions. Reference breathing rates were measured by a respiration belt placed around the chest and abdomen of a subject; reference heart rates (HR) were determined using the standard electrocardiogram. An automated selection of either the chest or abdominal video signal was determined by choosing the signal with a greater autocorrelation value. The breathing rate was then determined by selecting the dominant peak in the power spectrum. To evaluate the performance of the proposed methods, data were collected from 11 healthy subjects. The breathing ranges spanned both low and high frequencies (6–60 breaths/min), and the results show that the average median errors from the reflectance imaging on the chest and the abdominal walls based on choosing the maximum spectral peak were 1.43% and 1.62%, respectively. Similarly, HR estimates were also found to be accurate.