Cargando…
The beetle amnion and serosa functionally interact as apposed epithelia
Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786423/ https://www.ncbi.nlm.nih.gov/pubmed/26824390 http://dx.doi.org/10.7554/eLife.13834 |
_version_ | 1782420549542084608 |
---|---|
author | Hilbrant, Maarten Horn, Thorsten Koelzer, Stefan Panfilio, Kristen A |
author_facet | Hilbrant, Maarten Horn, Thorsten Koelzer, Stefan Panfilio, Kristen A |
author_sort | Hilbrant, Maarten |
collection | PubMed |
description | Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the EE tissues dynamically form a basal-basal epithelial bilayer, contradicting the previous hypothesis of EE intercalation. We find that the EE tissues repeatedly detach and reattach throughout development and have distinct roles. Quantitative live imaging analyses show that the amnion initiates EE rupture in a specialized anterior-ventral cap. RNAi phenotypes demonstrate that the serosa contracts autonomously. Thus, apposition in a bilayer enables the amnion as 'initiator' to coordinate with the serosa as 'driver' to achieve withdrawal. This EE strategy may reflect evolutionary changes within the holometabolous insects and serves as a model to study interactions between developing epithelia. DOI: http://dx.doi.org/10.7554/eLife.13834.001 |
format | Online Article Text |
id | pubmed-4786423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-47864232016-03-17 The beetle amnion and serosa functionally interact as apposed epithelia Hilbrant, Maarten Horn, Thorsten Koelzer, Stefan Panfilio, Kristen A eLife Cell Biology Unlike passive rupture of the human chorioamnion at birth, the insect extraembryonic (EE) tissues – the amnion and serosa – actively rupture and withdraw in late embryogenesis. Withdrawal is essential for development and has been a morphogenetic puzzle. Here, we use new fluorescent transgenic lines in the beetle Tribolium castaneum to show that the EE tissues dynamically form a basal-basal epithelial bilayer, contradicting the previous hypothesis of EE intercalation. We find that the EE tissues repeatedly detach and reattach throughout development and have distinct roles. Quantitative live imaging analyses show that the amnion initiates EE rupture in a specialized anterior-ventral cap. RNAi phenotypes demonstrate that the serosa contracts autonomously. Thus, apposition in a bilayer enables the amnion as 'initiator' to coordinate with the serosa as 'driver' to achieve withdrawal. This EE strategy may reflect evolutionary changes within the holometabolous insects and serves as a model to study interactions between developing epithelia. DOI: http://dx.doi.org/10.7554/eLife.13834.001 eLife Sciences Publications, Ltd 2016-01-29 /pmc/articles/PMC4786423/ /pubmed/26824390 http://dx.doi.org/10.7554/eLife.13834 Text en © 2016, Hilbrant et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Hilbrant, Maarten Horn, Thorsten Koelzer, Stefan Panfilio, Kristen A The beetle amnion and serosa functionally interact as apposed epithelia |
title | The beetle amnion and serosa functionally interact as apposed epithelia |
title_full | The beetle amnion and serosa functionally interact as apposed epithelia |
title_fullStr | The beetle amnion and serosa functionally interact as apposed epithelia |
title_full_unstemmed | The beetle amnion and serosa functionally interact as apposed epithelia |
title_short | The beetle amnion and serosa functionally interact as apposed epithelia |
title_sort | beetle amnion and serosa functionally interact as apposed epithelia |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786423/ https://www.ncbi.nlm.nih.gov/pubmed/26824390 http://dx.doi.org/10.7554/eLife.13834 |
work_keys_str_mv | AT hilbrantmaarten thebeetleamnionandserosafunctionallyinteractasapposedepithelia AT hornthorsten thebeetleamnionandserosafunctionallyinteractasapposedepithelia AT koelzerstefan thebeetleamnionandserosafunctionallyinteractasapposedepithelia AT panfiliokristena thebeetleamnionandserosafunctionallyinteractasapposedepithelia AT hilbrantmaarten beetleamnionandserosafunctionallyinteractasapposedepithelia AT hornthorsten beetleamnionandserosafunctionallyinteractasapposedepithelia AT koelzerstefan beetleamnionandserosafunctionallyinteractasapposedepithelia AT panfiliokristena beetleamnionandserosafunctionallyinteractasapposedepithelia |