Cargando…

A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate(1,2). We reasoned that newborn liver m...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yang, Wang, Lili, Bell, Peter, McMenamin, Deirdre, He, Zhenning, White, John, Yu, Hongwei, Xu, Chenyu, Morizono, Hiroki, Musunuru, Kiran, Batshaw, Mark L., Wilson, James M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786489/
https://www.ncbi.nlm.nih.gov/pubmed/26829317
http://dx.doi.org/10.1038/nbt.3469
_version_ 1782420556060033024
author Yang, Yang
Wang, Lili
Bell, Peter
McMenamin, Deirdre
He, Zhenning
White, John
Yu, Hongwei
Xu, Chenyu
Morizono, Hiroki
Musunuru, Kiran
Batshaw, Mark L.
Wilson, James M.
author_facet Yang, Yang
Wang, Lili
Bell, Peter
McMenamin, Deirdre
He, Zhenning
White, John
Yu, Hongwei
Xu, Chenyu
Morizono, Hiroki
Musunuru, Kiran
Batshaw, Mark L.
Wilson, James M.
author_sort Yang, Yang
collection PubMed
description Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate(1,2). We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet.
format Online
Article
Text
id pubmed-4786489
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-47864892016-08-01 A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice Yang, Yang Wang, Lili Bell, Peter McMenamin, Deirdre He, Zhenning White, John Yu, Hongwei Xu, Chenyu Morizono, Hiroki Musunuru, Kiran Batshaw, Mark L. Wilson, James M. Nat Biotechnol Article Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate(1,2). We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet. 2016-02-01 2016-03 /pmc/articles/PMC4786489/ /pubmed/26829317 http://dx.doi.org/10.1038/nbt.3469 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Yang, Yang
Wang, Lili
Bell, Peter
McMenamin, Deirdre
He, Zhenning
White, John
Yu, Hongwei
Xu, Chenyu
Morizono, Hiroki
Musunuru, Kiran
Batshaw, Mark L.
Wilson, James M.
A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title_full A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title_fullStr A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title_full_unstemmed A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title_short A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice
title_sort dual aav system enables the cas9-mediated correction of a metabolic liver disease in newborn mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786489/
https://www.ncbi.nlm.nih.gov/pubmed/26829317
http://dx.doi.org/10.1038/nbt.3469
work_keys_str_mv AT yangyang adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT wanglili adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT bellpeter adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT mcmenamindeirdre adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT hezhenning adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT whitejohn adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT yuhongwei adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT xuchenyu adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT morizonohiroki adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT musunurukiran adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT batshawmarkl adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT wilsonjamesm adualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT yangyang dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT wanglili dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT bellpeter dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT mcmenamindeirdre dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT hezhenning dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT whitejohn dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT yuhongwei dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT xuchenyu dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT morizonohiroki dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT musunurukiran dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT batshawmarkl dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice
AT wilsonjamesm dualaavsystemenablesthecas9mediatedcorrectionofametabolicliverdiseaseinnewbornmice