Cargando…

The algebraic characterizations for a formal power series over complete strong bimonoids

On the basis of run semantics and breadth-first algebraic semantics, the algebraic characterizations for a classes of formal power series over complete strong bimonoids are investigated in this paper. As recognizers, weighted pushdown automata with final states (WPDAs for short) and empty stack (WPD...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Jian Hua, Li, Chun Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786578/
https://www.ncbi.nlm.nih.gov/pubmed/27066342
http://dx.doi.org/10.1186/s40064-016-1764-x
Descripción
Sumario:On the basis of run semantics and breadth-first algebraic semantics, the algebraic characterizations for a classes of formal power series over complete strong bimonoids are investigated in this paper. As recognizers, weighted pushdown automata with final states (WPDAs for short) and empty stack (WPDAs[Formula: see text] ) are shown to be equivalent based on run semantics. Moreover, it is demonstrated that for every WPDA there is an equivalent crisp-simple weighted pushdown automaton with final states by run semantics if the underlying complete strong bimonoid satisfies multiplicatively local finiteness condition. As another type of generators, weighted context-free grammars over complete strong bimonoids are introduced, which are proven to be equivalent to WPDAs[Formula: see text] based on each one of both run semantics and breadth-first algebraic semantics. Finally examples are presented to illuminate the proposed methods and results.