Cargando…

Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast

Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Schifferdecker, Anna Judith, Siurkus, Juozas, Andersen, Mikael Rørdam, Joerck-Ramberg, Dorte, Ling, Zhihao, Zhou, Nerve, Blevins, James E., Sibirny, Andriy A., Piškur, Jure, Ishchuk, Olena P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786601/
https://www.ncbi.nlm.nih.gov/pubmed/26743658
http://dx.doi.org/10.1007/s00253-015-7266-x
_version_ 1782420573711761408
author Schifferdecker, Anna Judith
Siurkus, Juozas
Andersen, Mikael Rørdam
Joerck-Ramberg, Dorte
Ling, Zhihao
Zhou, Nerve
Blevins, James E.
Sibirny, Andriy A.
Piškur, Jure
Ishchuk, Olena P.
author_facet Schifferdecker, Anna Judith
Siurkus, Juozas
Andersen, Mikael Rørdam
Joerck-Ramberg, Dorte
Ling, Zhihao
Zhou, Nerve
Blevins, James E.
Sibirny, Andriy A.
Piškur, Jure
Ishchuk, Olena P.
author_sort Schifferdecker, Anna Judith
collection PubMed
description Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00253-015-7266-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4786601
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-47866012016-04-09 Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast Schifferdecker, Anna Judith Siurkus, Juozas Andersen, Mikael Rørdam Joerck-Ramberg, Dorte Ling, Zhihao Zhou, Nerve Blevins, James E. Sibirny, Andriy A. Piškur, Jure Ishchuk, Olena P. Appl Microbiol Biotechnol Applied Genetics and Molecular Biotechnology Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the “Custer effect”. Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00253-015-7266-x) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2016-01-08 2016 /pmc/articles/PMC4786601/ /pubmed/26743658 http://dx.doi.org/10.1007/s00253-015-7266-x Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Applied Genetics and Molecular Biotechnology
Schifferdecker, Anna Judith
Siurkus, Juozas
Andersen, Mikael Rørdam
Joerck-Ramberg, Dorte
Ling, Zhihao
Zhou, Nerve
Blevins, James E.
Sibirny, Andriy A.
Piškur, Jure
Ishchuk, Olena P.
Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title_full Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title_fullStr Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title_full_unstemmed Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title_short Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
title_sort alcohol dehydrogenase gene adh3 activates glucose alcoholic fermentation in genetically engineered dekkera bruxellensis yeast
topic Applied Genetics and Molecular Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786601/
https://www.ncbi.nlm.nih.gov/pubmed/26743658
http://dx.doi.org/10.1007/s00253-015-7266-x
work_keys_str_mv AT schifferdeckerannajudith alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT siurkusjuozas alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT andersenmikaelrørdam alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT joerckrambergdorte alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT lingzhihao alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT zhounerve alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT blevinsjamese alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT sibirnyandriya alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT piskurjure alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast
AT ishchukolenap alcoholdehydrogenasegeneadh3activatesglucosealcoholicfermentationingeneticallyengineereddekkerabruxellensisyeast