Cargando…

Reproducibility of Heart Rate Variability Indices in Children with Cystic Fibrosis

Fundamental to the potential utilisation of heart rate variability (HRV) indices as a prognostic tool is the reproducibility of these measures. The purpose of the present study was therefore to investigate the reproducibility of 24-hour derived HRV indices in a clinical paediatric population. Eighte...

Descripción completa

Detalles Bibliográficos
Autores principales: McNarry, Melitta A., Mackintosh, Kelly A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788309/
https://www.ncbi.nlm.nih.gov/pubmed/26968039
http://dx.doi.org/10.1371/journal.pone.0151464
Descripción
Sumario:Fundamental to the potential utilisation of heart rate variability (HRV) indices as a prognostic tool is the reproducibility of these measures. The purpose of the present study was therefore to investigate the reproducibility of 24-hour derived HRV indices in a clinical paediatric population. Eighteen children (10 boys; 12.4 ± 2.8 years) with mild to moderate Cystic Fibrosis (CF; FVC: 83 ± 12% predicted; FEV(1): 80 ± 9% predicted) and eighteen age- and sex-matched controls (10 boys; 12.5 ± 2.7 years) wore a combined ECG and accelerometer for two consecutive days. Standard time and frequency domain indices of HRV were subsequently derived. Reproducibility was assessed by Bland-Altman plots, 95% limits of agreement and intra-class correlation coefficients (ICC). In both groups, there was no systematic difference between days, with the variables demonstrating a symmetrical, homoscedastic distribution around the zero line. The time domain parameters demonstrated a good to excellent reproducibility irrespective of the population considered (ICC: 0.56 to 0.86). In contrast, whilst the frequency domain parameters similarly showed excellent reproducibility in the healthy children (ICC: 0.70 to 0.96), the majority of the frequency domain parameters illustrated a poor to moderate reproducibility in those with CF (ICC: 0.22 to 0.43). The exceptions to this trend were the normalised LF and HF components which were associated with a good to excellent reproducibility. These findings thereby support the utilisation of time and relative frequency domain HRV indices as a prognostic tool in children with CF. Furthermore, the present results highlight the excellent reproducibility of HRV in healthy children, indicating that this may be a useful tool to assess intervention effectiveness in this population.