Cargando…

Nanoscale rotary apparatus formed from tight-fitting 3D DNA components

We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled...

Descripción completa

Detalles Bibliográficos
Autores principales: Ketterer, Philip, Willner, Elena M., Dietz, Hendrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788491/
https://www.ncbi.nlm.nih.gov/pubmed/26989778
http://dx.doi.org/10.1126/sciadv.1501209
Descripción
Sumario:We report a nanoscale rotary mechanism that reproduces some of the dynamic properties of biological rotary motors in the absence of an energy source, such as random walks on a circle with dwells at docking sites. Our mechanism is built modularly from tight-fitting components that were self-assembled using multilayer DNA origami. The apparatus has greater structural complexity than previous mechanically interlocked objects and features a well-defined angular degree of freedom without restricting the range of rotation. We studied the dynamics of our mechanism using single-particle experiments analogous to those performed previously with actin-labeled adenosine triphosphate synthases. In our mechanism, rotor mobility, the number of docking sites, and the dwell times at these sites may be controlled through rational design. Our prototype thus realizes a working platform toward creating synthetic nanoscale rotary motors. Our methods will support creating other complex nanoscale mechanisms based on tightly fitting, sterically constrained, but mobile, DNA components.