Cargando…
Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression
Diffusion tensor imaging (DTI) holds promise for developing our understanding of white-matter pathology in major depressive disorder (MDD). Variable findings in DTI-based investigations of MDD, however, have thwarted development of this literature. Effects of extra-cellular free-water on the sensiti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788504/ https://www.ncbi.nlm.nih.gov/pubmed/27006903 http://dx.doi.org/10.1016/j.nicl.2015.11.020 |
Sumario: | Diffusion tensor imaging (DTI) holds promise for developing our understanding of white-matter pathology in major depressive disorder (MDD). Variable findings in DTI-based investigations of MDD, however, have thwarted development of this literature. Effects of extra-cellular free-water on the sensitivity of DTI metrics could account for some of this inconsistency. Here we investigated whether applying a free-water correction algorithm to DTI data could improve the sensitivity to detect clinical effects using DTI metrics. Only after applying this correction, we found: a) significantly decreased fractional anisotropy and axial diffusivity (AD) in the left inferior fronto-occipital fasciculus (IFOF) in MDD; and b) increased self-reported stress that significantly correlated with decreased IFOF AD in depression. We estimated and confirmed the robustness of differences observed between free-water corrected and uncorrected approaches using bootstrapping. We conclude that applying a free-water correction to DTI data increases the sensitivity of DTI-based metrics to detect clinical effects in MDD. |
---|