Cargando…
Mutations in PIK3CA sensitize breast cancer cells to physiologic levels of aspirin
A review of the literature finds that women diagnosed with breast cancer, who were on an aspirin regimen, experienced a decreased risk of distant metastases and death. Several recent studies have reported an improvement in overall survival in colorectal cancer patients who harbored mutations in the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788696/ https://www.ncbi.nlm.nih.gov/pubmed/26915040 http://dx.doi.org/10.1007/s10549-016-3729-8 |
Sumario: | A review of the literature finds that women diagnosed with breast cancer, who were on an aspirin regimen, experienced a decreased risk of distant metastases and death. Several recent studies have reported an improvement in overall survival in colorectal cancer patients who harbored mutations in the oncogene PIK3CA and received a daily aspirin regimen. Breast cancer patients on a daily aspirin regimen experienced decreased risk of distant metastases and death. PIK3CA is the most frequently mutated oncogene in breast cancer, occurring in up to 45 % of all breast cancers. In order to determine if mutations in PIK3CA sensitized breast cancers to aspirin treatment, we employed the use of isogenic cellular clones of the non-tumorigenic, breast epithelial cell line MCF-10A that harbored mutations in either PIK3CA or KRAS or both. We report that mutations in both PIK3CA and KRAS are required for the greatest aspirin sensitivity in breast cancer, and that the GSK3β protein was hyperphosphorylated in aspirin-treated double knockin cells, but not in other clones/treatments. A more modest effect was observed with single mutant PIK3CA, but not KRAS alone. These observations were further confirmed in a panel of breast cancer cell lines. Our findings provide the first evidence that mutations in PIK3CA sensitize breast cancer cells to aspirin. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-016-3729-8) contains supplementary material, which is available to authorized users. |
---|