Cargando…
Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer
PURPOSE: To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. METHODS: An in-house treatment planning system was modified to include multi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788837/ https://www.ncbi.nlm.nih.gov/pubmed/26968687 http://dx.doi.org/10.1186/s13014-016-0609-7 |
_version_ | 1782420773293522944 |
---|---|
author | Smith, Wade P. Kim, Minsun Holdsworth, Clay Liao, Jay Phillips, Mark H. |
author_facet | Smith, Wade P. Kim, Minsun Holdsworth, Clay Liao, Jay Phillips, Mark H. |
author_sort | Smith, Wade P. |
collection | PubMed |
description | PURPOSE: To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. METHODS: An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. RESULTS: The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. CONCLUSIONS: The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions. |
format | Online Article Text |
id | pubmed-4788837 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-47888372016-03-13 Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer Smith, Wade P. Kim, Minsun Holdsworth, Clay Liao, Jay Phillips, Mark H. Radiat Oncol Research PURPOSE: To build a new treatment planning approach that extends beyond radiation transport and IMRT optimization by modeling the radiation therapy process and prognostic indicators for more outcome-focused decision making. METHODS: An in-house treatment planning system was modified to include multiobjective inverse planning, a probabilistic outcome model, and a multi-attribute decision aid. A genetic algorithm generated a set of plans embodying trade-offs between the separate objectives. An influence diagram network modeled the radiation therapy process of prostate cancer using expert opinion, results of clinical trials, and published research. A Markov model calculated a quality adjusted life expectancy (QALE), which was the endpoint for ranking plans. RESULTS: The Multiobjective Evolutionary Algorithm (MOEA) was designed to produce an approximation of the Pareto Front representing optimal tradeoffs for IMRT plans. Prognostic information from the dosimetrics of the plans, and from patient-specific clinical variables were combined by the influence diagram. QALEs were calculated for each plan for each set of patient characteristics. Sensitivity analyses were conducted to explore changes in outcomes for variations in patient characteristics and dosimetric variables. The model calculated life expectancies that were in agreement with an independent clinical study. CONCLUSIONS: The radiation therapy model proposed has integrated a number of different physical, biological and clinical models into a more comprehensive model. It illustrates a number of the critical aspects of treatment planning that can be improved and represents a more detailed description of the therapy process. A Markov model was implemented to provide a stronger connection between dosimetric variables and clinical outcomes and could provide a practical, quantitative method for making difficult clinical decisions. BioMed Central 2016-03-11 /pmc/articles/PMC4788837/ /pubmed/26968687 http://dx.doi.org/10.1186/s13014-016-0609-7 Text en © Smith et al. 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Smith, Wade P. Kim, Minsun Holdsworth, Clay Liao, Jay Phillips, Mark H. Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title | Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title_full | Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title_fullStr | Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title_full_unstemmed | Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title_short | Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer |
title_sort | personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of imrt plans for prostate cancer |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788837/ https://www.ncbi.nlm.nih.gov/pubmed/26968687 http://dx.doi.org/10.1186/s13014-016-0609-7 |
work_keys_str_mv | AT smithwadep personalizedtreatmentplanningwithamodelofradiationtherapyoutcomesforuseinmultiobjectiveoptimizationofimrtplansforprostatecancer AT kimminsun personalizedtreatmentplanningwithamodelofradiationtherapyoutcomesforuseinmultiobjectiveoptimizationofimrtplansforprostatecancer AT holdsworthclay personalizedtreatmentplanningwithamodelofradiationtherapyoutcomesforuseinmultiobjectiveoptimizationofimrtplansforprostatecancer AT liaojay personalizedtreatmentplanningwithamodelofradiationtherapyoutcomesforuseinmultiobjectiveoptimizationofimrtplansforprostatecancer AT phillipsmarkh personalizedtreatmentplanningwithamodelofradiationtherapyoutcomesforuseinmultiobjectiveoptimizationofimrtplansforprostatecancer |