Cargando…
An Integrin-Dependent Role of Pouch Endoderm in Hyoid Cartilage Development
Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinα5 mutant in zebrafish that has region-specific losses of facial cartilages der...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC479042/ https://www.ncbi.nlm.nih.gov/pubmed/15269787 http://dx.doi.org/10.1371/journal.pbio.0020244 |
Sumario: | Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinα5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinα5(−) animals. Earlier in development, integrinα5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinα5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinα5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish. |
---|