Cargando…
Learning and inference using complex generative models in a spatial localization task
A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integr...
Autores principales: | Bejjanki, Vikranth R., Knill, David C., Aslin, Richard N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790422/ https://www.ncbi.nlm.nih.gov/pubmed/26967015 http://dx.doi.org/10.1167/16.5.9 |
Ejemplares similares
-
Cue Integration in Categorical Tasks: Insights from Audio-Visual Speech Perception
por: Bejjanki, Vikranth Rao, et al.
Publicado: (2011) -
Sensory cue-combination in the context of newly learned categories
por: Bankieris, Kaitlyn R., et al.
Publicado: (2017) -
Multiple timescales of learning indicated by changes in evidence-accumulation processes during perceptual decision-making
por: Cochrane, Aaron, et al.
Publicado: (2023) -
Bayesian transfer in a complex spatial localization task
por: Kiryakova, Reneta K., et al.
Publicado: (2020) -
Synthetic Spatial Foraging With Active Inference in a Geocaching Task
por: Neacsu, Victorita, et al.
Publicado: (2022)