Cargando…
Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection
OBJECTIVES: Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe(3+) saturated) bovine apo-lactoferrin (apo-bLf) and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790624/ https://www.ncbi.nlm.nih.gov/pubmed/26759363 http://dx.doi.org/10.1093/jac/dkv452 |
_version_ | 1782421005534232576 |
---|---|
author | Chilton, C. H. Crowther, G. S. Śpiewak, K. Brindell, M. Singh, G. Wilcox, M. H. Monaghan, T. M. |
author_facet | Chilton, C. H. Crowther, G. S. Śpiewak, K. Brindell, M. Singh, G. Wilcox, M. H. Monaghan, T. M. |
author_sort | Chilton, C. H. |
collection | PubMed |
description | OBJECTIVES: Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe(3+) saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe(3+) saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. METHODS: Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. RESULTS: In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. CONCLUSIONS: Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI. |
format | Online Article Text |
id | pubmed-4790624 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-47906242016-03-16 Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection Chilton, C. H. Crowther, G. S. Śpiewak, K. Brindell, M. Singh, G. Wilcox, M. H. Monaghan, T. M. J Antimicrob Chemother Original Research OBJECTIVES: Clostridium difficile infection (CDI) is a global healthcare problem. Recent evidence suggests that the availability of iron may be important for C. difficile growth. This study evaluated the comparative effects of iron-depleted (1% Fe(3+) saturated) bovine apo-lactoferrin (apo-bLf) and iron-saturated (85% Fe(3+) saturated) bovine holo-lactoferrin (holo-bLf) in a human in vitro gut model that simulates CDI. METHODS: Two parallel triple-stage chemostat gut models were inoculated with pooled human faeces and spiked with C. difficile spores (strain 027 210, PCR ribotype 027). Holo- or apo-bLf was instilled (5 mg/mL, once daily) for 35 days. After 7 days, clindamycin was instilled (33.9 mg/L, four times daily) to induce simulated CDI. Indigenous microflora populations, C. difficile total counts and spores, cytotoxin titres, short chain fatty acid concentrations, biometal concentrations, lactoferrin concentration and iron content of lactoferrin were monitored daily. RESULTS: In the apo-bLf model, germination of C. difficile spores occurred 6 days post instillation of clindamycin, followed by rapid vegetative cell proliferation and detectable toxin production. By contrast, in the holo-bLf model, only a modest vegetative cell population was observed until 16 days post antibiotic administration. Notably, no toxin was detected in this model. In separate batch culture experiments, holo-bLf prevented C. difficile vegetative cell growth and toxin production, whereas apo-bLf and iron alone did not. CONCLUSIONS: Holo-bLf, but not apo-bLf, delayed C. difficile growth and prevented toxin production in a human gut model of CDI. This inhibitory effect may be iron independent. These observations suggest that bLf in its iron-saturated state could be used as a novel preventative or treatment strategy for CDI. Oxford University Press 2016-04 2016-01-11 /pmc/articles/PMC4790624/ /pubmed/26759363 http://dx.doi.org/10.1093/jac/dkv452 Text en © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Chilton, C. H. Crowther, G. S. Śpiewak, K. Brindell, M. Singh, G. Wilcox, M. H. Monaghan, T. M. Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title | Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title_full | Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title_fullStr | Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title_full_unstemmed | Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title_short | Potential of lactoferrin to prevent antibiotic-induced Clostridium difficile infection |
title_sort | potential of lactoferrin to prevent antibiotic-induced clostridium difficile infection |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790624/ https://www.ncbi.nlm.nih.gov/pubmed/26759363 http://dx.doi.org/10.1093/jac/dkv452 |
work_keys_str_mv | AT chiltonch potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT crowthergs potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT spiewakk potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT brindellm potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT singhg potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT wilcoxmh potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection AT monaghantm potentialoflactoferrintopreventantibioticinducedclostridiumdifficileinfection |