Cargando…
Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization
Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little about the dynamics of cell and tissue swelling, and the differential changes in the volumes of neurons and glia during pathological states such as spreading depolarizations (SD) under is...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790933/ https://www.ncbi.nlm.nih.gov/pubmed/26974767 http://dx.doi.org/10.1371/journal.pone.0147060 |
_version_ | 1782421026817179648 |
---|---|
author | Hübel, Niklas Ullah, Ghanim |
author_facet | Hübel, Niklas Ullah, Ghanim |
author_sort | Hübel, Niklas |
collection | PubMed |
description | Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little about the dynamics of cell and tissue swelling, and the differential changes in the volumes of neurons and glia during pathological states such as spreading depolarizations (SD) under ischemic and non–ischemic conditions, and epileptic seizures. By combining the Hodgkin–Huxley type spiking dynamics, dynamic ion concentrations, and simultaneous neuronal and astroglial volume changes into a comprehensive model, we elucidate why glial cells swell more than neurons in SD and the special case of anoxic depolarization (AD), and explore the relative contributions of the two cell types to tissue swelling. Our results demonstrate that anion channels, particularly Cl(−), are intrinsically connected to cell swelling and blocking these currents prevents changes in cell volume. The model is based on a simple and physiologically realistic description. We introduce model extensions that are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles, or by a phenomenological combination of these principles and known physiological facts. This work provides insights into numerous studies related to neuronal and glial volume changes in SD that otherwise seem contradictory, and is broadly applicable to swelling in other cell types and conditions. |
format | Online Article Text |
id | pubmed-4790933 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47909332016-03-23 Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization Hübel, Niklas Ullah, Ghanim PLoS One Research Article Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little about the dynamics of cell and tissue swelling, and the differential changes in the volumes of neurons and glia during pathological states such as spreading depolarizations (SD) under ischemic and non–ischemic conditions, and epileptic seizures. By combining the Hodgkin–Huxley type spiking dynamics, dynamic ion concentrations, and simultaneous neuronal and astroglial volume changes into a comprehensive model, we elucidate why glial cells swell more than neurons in SD and the special case of anoxic depolarization (AD), and explore the relative contributions of the two cell types to tissue swelling. Our results demonstrate that anion channels, particularly Cl(−), are intrinsically connected to cell swelling and blocking these currents prevents changes in cell volume. The model is based on a simple and physiologically realistic description. We introduce model extensions that are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles, or by a phenomenological combination of these principles and known physiological facts. This work provides insights into numerous studies related to neuronal and glial volume changes in SD that otherwise seem contradictory, and is broadly applicable to swelling in other cell types and conditions. Public Library of Science 2016-03-14 /pmc/articles/PMC4790933/ /pubmed/26974767 http://dx.doi.org/10.1371/journal.pone.0147060 Text en © 2016 Hübel, Ullah http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hübel, Niklas Ullah, Ghanim Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title | Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title_full | Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title_fullStr | Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title_full_unstemmed | Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title_short | Anions Govern Cell Volume: A Case Study of Relative Astrocytic and Neuronal Swelling in Spreading Depolarization |
title_sort | anions govern cell volume: a case study of relative astrocytic and neuronal swelling in spreading depolarization |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4790933/ https://www.ncbi.nlm.nih.gov/pubmed/26974767 http://dx.doi.org/10.1371/journal.pone.0147060 |
work_keys_str_mv | AT hubelniklas anionsgoverncellvolumeacasestudyofrelativeastrocyticandneuronalswellinginspreadingdepolarization AT ullahghanim anionsgoverncellvolumeacasestudyofrelativeastrocyticandneuronalswellinginspreadingdepolarization |