Cargando…

Enhanced therapeutic effect of Adriamycin on multidrug resistant breast cancer by the ABCG2-siRNA loaded polymeric nanoparticles assisted with ultrasound

The overexpression of the breast cancer resistance protein (ABCG2) confers resistance to Adriamycin (ADR) in breast cancer. The silencing of ABCG2 using small interfering RNA (siRNA) could be a promising approach to overcome multidrug resistance (MDR) in cancer cells. To deliver ABCG2-siRNA effectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Min, Shen, Ming, Teng, Yanwei, Sun, Ying, Li, Fan, Zhang, Xiangyu, Xu, Yuanyuan, Duan, Yourong, Du, Lianfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791266/
https://www.ncbi.nlm.nih.gov/pubmed/26575421
Descripción
Sumario:The overexpression of the breast cancer resistance protein (ABCG2) confers resistance to Adriamycin (ADR) in breast cancer. The silencing of ABCG2 using small interfering RNA (siRNA) could be a promising approach to overcome multidrug resistance (MDR) in cancer cells. To deliver ABCG2-siRNA effectively into breast cancer cells, we used mPEG-PLGA-PLL (PEAL) nanoparticles (NPs) with ultrasound-targeted microbubble destruction (UTMD). PEAL NPs were prepared with an emulsion-solvent evaporation method. The NPs size was about 131.5 ± 6.5 nm. The siRNA stability in serum was enhanced. The intracellular ADR concentration increased after the introduction of siRNA-loaded NPs. After intravenous injection of PEAL NPs in tumor-bearing mice, the ABCG2-siRNA-loaded NPs with UTMD efficiently silenced the ABCG2 gene and enhanced the ADR susceptibility of MCF-7/ADR (ADR resistant human breast cancer cells). The siRNA-loaded NPs with UTMD + ADR showed better tumor inhibition effect and good safety in vivo. These results indicate that ADR-chemotherapy in combination with ABCG2-siRNA is an attractive strategy to treat breast cancer.