Cargando…

Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment

The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relativ...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Min Hee, Min, Woo-Kie, Jin, Hee Kyung, Bae, Jae-sung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Biochemistry and Molecular Biology 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791319/
https://www.ncbi.nlm.nih.gov/pubmed/26538251
http://dx.doi.org/10.5483/BMBRep.2015.48.12.22
Descripción
Sumario:The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide. [BMB Reports 2015; 48(12): 645-646]