Cargando…
Deep Learning in Label-free Cell Classification
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack suffi...
Autores principales: | Chen, Claire Lifan, Mahjoubfar, Ata, Tai, Li-Chia, Blaby, Ian K., Huang, Allen, Niazi, Kayvan Reza, Jalali, Bahram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791545/ https://www.ncbi.nlm.nih.gov/pubmed/26975219 http://dx.doi.org/10.1038/srep21471 |
Ejemplares similares
-
Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry
por: Li, Yueqin, et al.
Publicado: (2019) -
Artificial intelligence in label-free microscopy: biological cell classification by time stretch
por: Mahjoubfar, Ata, et al.
Publicado: (2017) -
Optical Data Compression in Time Stretch Imaging
por: Chen, Claire Lifan, et al.
Publicado: (2015) -
Design of Warped Stretch Transform
por: Mahjoubfar, Ata, et al.
Publicado: (2015) -
Context-Aware Image Compression
por: Chan, Jacky C. K., et al.
Publicado: (2016)