Cargando…

Targeted next-generation sequencing identification of mutations in patients with disorders of sex development

BACKGROUND: The identification of causative mutations is important for treatment decisions and genetic counseling of patients with disorders of sex development (DSD). Here, we designed a new assay based on targeted next-generation sequencing (NGS) to diagnose these genetically heterogeneous disorder...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Yanling, Yi, Yuting, Yao, Hong, Yang, Ziying, Hu, Huamei, Liu, Jiucheng, Gao, Changxin, Zhang, Ming, Zhou, Liying, Asan, Yi, Xin, Liang, Zhiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791760/
https://www.ncbi.nlm.nih.gov/pubmed/26980296
http://dx.doi.org/10.1186/s12881-016-0286-2
Descripción
Sumario:BACKGROUND: The identification of causative mutations is important for treatment decisions and genetic counseling of patients with disorders of sex development (DSD). Here, we designed a new assay based on targeted next-generation sequencing (NGS) to diagnose these genetically heterogeneous disorders. METHODS: All coding regions and flanking sequences of 219 genes implicated in DSD were designed to be included on a panel. A total of 45 samples were used for sex chromosome dosage validation by targeted sequencing using the NGS platform. Among these, 21 samples were processed to find the causative mutation. RESULTS: The sex chromosome dosages of all 45 samples in this assay were concordant with their corresponding karyotyping results. Among the 21 DSD patients, a total of 11 mutations in SRY, NR0B1, AR, CYP17A1, GK, CHD7, and SRD5A2 were identified, including five single nucleotide variants, three InDels, one in-frame duplication, one SRY-positive 46,XX, and one gross duplication with an estimated size of more than 427,038 bp containing NR0B1 and GK. We also identified six novel mutations: c.230_231insA in SRY, c.7389delA in CHD7, c.273C>G in NR0B1, and c.2158G>A, c.1825A>G, and c.2057_2065dupTGTGTGCTG in AR. CONCLUSIONS: Our assay was able to make a genetic diagnosis for eight DSD patients (38.1 %), and identified variants of uncertain clinical significance in the other three cases (14.3 %). Targeted NGS is therefore a comprehensive and efficient method to diagnose DSD. This work also expands the pathogenic mutation spectrum of DSD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12881-016-0286-2) contains supplementary material, which is available to authorized users.