Cargando…

Human H7N9 virus induces a more pronounced pro-inflammatory cytokine but an attenuated interferon response in human bronchial epithelial cells when compared with an epidemiologically-linked chicken H7N9 virus

BACKGROUND: Avian influenza virus H7N9 has jumped species barrier, causing sporadic human infections since 2013. We have previously isolated an H7N9 virus from a patient, and an H7N9 virus from a chicken in a live poultry market where the patient visited during the incubation period. These two virus...

Descripción completa

Detalles Bibliográficos
Autores principales: To, Kelvin K. W., Lau, Candy C. Y., Woo, Patrick C. Y., Lau, Susanna K. P., Chan, Jasper F. W., Chan, Kwok-Hung, Zhang, Anna J. X., Chen, Honglin, Yuen, Kwok-Yung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791762/
https://www.ncbi.nlm.nih.gov/pubmed/26975414
http://dx.doi.org/10.1186/s12985-016-0498-2
Descripción
Sumario:BACKGROUND: Avian influenza virus H7N9 has jumped species barrier, causing sporadic human infections since 2013. We have previously isolated an H7N9 virus from a patient, and an H7N9 virus from a chicken in a live poultry market where the patient visited during the incubation period. These two viruses were genetically highly similar. This study sought to use a human bronchial epithelial cell line model to infer the virulence of these H7N9 viruses in humans. METHODS: Human bronchial epithelial cell line Calu-3 was infected with two H7N9 viruses (human H7N9-HU and chicken H7N9-CK), a human H5N1 virus and a human 2009 pandemic H1N1 virus. The infected cell lysate was collected at different time points post-infection for the determination of the levels of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α] and interleukin 6 [IL-6]), anti-inflammatory cytokines (interleukin 10 [IL-10] and transforming growth factor beta [TGF-β]), chemokines (interleukin 8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]), and interferons (interferon β [IFN-β] and interferon lambda 1 [IFNL1]). The viral load in the cell lysate was also measured. RESULTS: Comparison of the human and chicken H7N9 viruses showed that H7N9-HU induced significantly higher levels of TNF-α at 12 h post-infection, and significantly higher levels of IL-8 from 12 to 48 h post-infection than those of H7N9-CK. However, the level of IFNL1 was lower for H7N9-HU than that of H7N9-CK at 48 h post-infection (P < 0.001). H7N9-HU had significantly higher viral loads than H7N9-CK at 3 and 6 h post-infection. H5N1 induced significantly higher levels of TNF-α, IL-6, IL-8, IL-10 and MCP-1 than those of H7N9 viruses at 48 h post-infection. Conversely, H1N1 induced lower levels of TNF-α, IL-10, MCP-1, IFNL1 and IFN-β when compared with H7N9 viruses at the same time point. CONCLUSIONS: H7N9-HU induced higher levels of pro-inflammatory IL-6 and IL-8 and exhibited a more rapid viral replication than H7N9-CK. However, the level of antiviral IFNL1 was lower for H7N9-HU than H7N9-CK. Our results suggest that the gained properties in modulating human innate immunity by H7N9-HU transformed it to be a more virulent virus in humans than H7N9-CK.