Cargando…

Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food

Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Longjiao, He, Jing, Cao, Xiaohan, Huang, Kunlun, Luo, Yunbo, Xu, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792147/
https://www.ncbi.nlm.nih.gov/pubmed/26976753
http://dx.doi.org/10.1038/srep16092
Descripción
Sumario:Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 10(4)–2.8 × 10(6) cells/mL with a detection limit (LOD) of 0.9 × 10(3) cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens.