Cargando…
Social Contact Networks and Mixing among Students in K-12 Schools in Pittsburgh, PA
Students attending schools play an important role in the transmission of influenza. In this study, we present a social network analysis of contacts among 1,828 students in eight different schools in urban and suburban areas in and near Pittsburgh, Pennsylvania, United States of America, including el...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792376/ https://www.ncbi.nlm.nih.gov/pubmed/26978780 http://dx.doi.org/10.1371/journal.pone.0151139 |
Sumario: | Students attending schools play an important role in the transmission of influenza. In this study, we present a social network analysis of contacts among 1,828 students in eight different schools in urban and suburban areas in and near Pittsburgh, Pennsylvania, United States of America, including elementary, elementary-middle, middle, and high schools. We collected social contact information of students who wore wireless sensor devices that regularly recorded other devices if they are within a distance of 3 meters. We analyzed these networks to identify patterns of proximal student interactions in different classes and grades, to describe community structure within the schools, and to assess the impact of the physical environment of schools on proximal contacts. In the elementary and middle schools, we observed a high number of intra-grade and intra-classroom contacts and a relatively low number of inter-grade contacts. However, in high schools, contact networks were well connected and mixed across grades. High modularity of lower grades suggests that assumptions of homogeneous mixing in epidemic models may be inappropriate; whereas lower modularity in high schools suggests that homogenous mixing assumptions may be more acceptable in these settings. The results suggest that interventions targeting subsets of classrooms may work better in elementary schools than high schools. Our work presents quantitative measures of age-specific, school-based contacts that can be used as the basis for constructing models of the transmission of infections in schools. |
---|