Cargando…
S/HIC: Robust Identification of Soft and Hard Sweeps Using Machine Learning
Detecting the targets of adaptive natural selection from whole genome sequencing data is a central problem for population genetics. However, to date most methods have shown sub-optimal performance under realistic demographic scenarios. Moreover, over the past decade there has been a renewed interest...
Autores principales: | Schrider, Daniel R., Kern, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792382/ https://www.ncbi.nlm.nih.gov/pubmed/26977894 http://dx.doi.org/10.1371/journal.pgen.1005928 |
Ejemplares similares
-
diploS/HIC: An Updated Approach to Classifying Selective Sweeps
por: Kern, Andrew D., et al.
Publicado: (2018) -
Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome
por: Schrider, Daniel R., et al.
Publicado: (2017) -
Discovery of Ongoing Selective Sweeps within Anopheles Mosquito Populations Using Deep Learning
por: Xue, Alexander T, et al.
Publicado: (2020) -
On Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure
por: Ferrer-Admetlla, Anna, et al.
Publicado: (2014) -
Supervised Machine Learning for Population Genetics: A New Paradigm
por: Schrider, Daniel R., et al.
Publicado: (2018)