Cargando…
Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity
Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify...
Autores principales: | Chen, Qiu-Feng, Chen, Hua-Jun, Liu, Jun, Sun, Tao, Shen, Qun-Tai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792397/ https://www.ncbi.nlm.nih.gov/pubmed/26978777 http://dx.doi.org/10.1371/journal.pone.0151263 |
Ejemplares similares
-
Disrupted Brain Intrinsic Networks and Executive Dysfunction in Cirrhotic Patients without Overt Hepatic Encephalopathy
por: Yang, Zhe-Ting, et al.
Publicado: (2018) -
Reduced Cortical Complexity in Cirrhotic Patients with Minimal Hepatic Encephalopathy
por: Chen, Qiu-Feng, et al.
Publicado: (2020) -
Classification of Cirrhotic Patients with or without Minimal Hepatic Encephalopathy and Healthy Subjects Using Resting-State Attention-Related Network Analysis
por: Chen, Hua-Jun, et al.
Publicado: (2014) -
Predictive models of minimal hepatic encephalopathy for cirrhotic patients based on large-scale brain intrinsic connectivity networks
por: Jiao, Yun, et al.
Publicado: (2017) -
Psychometric Hepatic Encephalopathy Score for the Diagnosis of Minimal Hepatic Encephalopathy in Thai Cirrhotic Patients
por: Thanapirom, Kessarin, et al.
Publicado: (2023)