Cargando…

Novel Approach to Simulate Sleep Apnea Patients for Evaluating Positive Pressure Therapy Devices

Bench testing is a useful method to characterize the response of different automatic positive airway pressure (APAP) devices under well-controlled conditions. However, previous models did not consider the diversity of obstructive sleep apnea (OSA) patients’ characteristics and phenotypes. The object...

Descripción completa

Detalles Bibliográficos
Autores principales: Isetta, Valentina, Montserrat, Josep M., Santano, Raquel, Wimms, Alison J., Ramanan, Dinesh, Woehrle, Holger, Navajas, Daniel, Farré, Ramon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792477/
https://www.ncbi.nlm.nih.gov/pubmed/26978077
http://dx.doi.org/10.1371/journal.pone.0151530
Descripción
Sumario:Bench testing is a useful method to characterize the response of different automatic positive airway pressure (APAP) devices under well-controlled conditions. However, previous models did not consider the diversity of obstructive sleep apnea (OSA) patients’ characteristics and phenotypes. The objective of this proof-of-concept study was to design a new bench test for realistically simulating an OSA patient’s night, and to implement a one-night example of a typical female phenotype for comparing responses to several currently-available APAP devices. We developed a novel approach aimed at replicating a typical night of sleep which includes different disturbed breathing events, disease severities, sleep/wake phases, body postures and respiratory artefacts. The simulated female OSA patient example that we implemented included periods of wake, light sleep and deep sleep with positional changes and was connected to ten different APAP devices. Flow and pressure readings were recorded; each device was tested twice. The new approach for simulating female OSA patients effectively combined a wide variety of disturbed breathing patterns to mimic the response of a predefined patient type. There were marked differences in response between devices; only three were able to overcome flow limitation to normalize breathing, and only five devices were associated with a residual apnea-hypopnea index of <5/h. In conclusion, bench tests can be designed to simulate specific patient characteristics, and typical stages of sleep, body position, and wake. Each APAP device behaved differently when exposed to this controlled model of a female OSA patient, and should lead to further understanding of OSA treatment.