Cargando…
Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature
New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to no...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792855/ https://www.ncbi.nlm.nih.gov/pubmed/27014735 http://dx.doi.org/10.1016/j.dib.2016.02.080 |
_version_ | 1782421292640632832 |
---|---|
author | Merrill, Joseph R. Krajewski, Krzysztof Yuan, Hong Frank, Jonathan E. Lalush, David S. Patterson, Cam Veleva, Anka N. |
author_facet | Merrill, Joseph R. Krajewski, Krzysztof Yuan, Hong Frank, Jonathan E. Lalush, David S. Patterson, Cam Veleva, Anka N. |
author_sort | Merrill, Joseph R. |
collection | PubMed |
description | New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article “Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature” (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. |
format | Online Article Text |
id | pubmed-4792855 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-47928552016-03-24 Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature Merrill, Joseph R. Krajewski, Krzysztof Yuan, Hong Frank, Jonathan E. Lalush, David S. Patterson, Cam Veleva, Anka N. Data Brief Data Article New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article “Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature” (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. Elsevier 2016-03-04 /pmc/articles/PMC4792855/ /pubmed/27014735 http://dx.doi.org/10.1016/j.dib.2016.02.080 Text en © 2016 Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Data Article Merrill, Joseph R. Krajewski, Krzysztof Yuan, Hong Frank, Jonathan E. Lalush, David S. Patterson, Cam Veleva, Anka N. Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title | Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title_full | Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title_fullStr | Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title_full_unstemmed | Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title_short | Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
title_sort | data on biodistribution and radiation absorbed dose profile of a novel (64)cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792855/ https://www.ncbi.nlm.nih.gov/pubmed/27014735 http://dx.doi.org/10.1016/j.dib.2016.02.080 |
work_keys_str_mv | AT merrilljosephr dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT krajewskikrzysztof dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT yuanhong dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT frankjonathane dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT lalushdavids dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT pattersoncam dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature AT velevaankan dataonbiodistributionandradiationabsorbeddoseprofileofanovel64culabeledhighaffinitycellspecificpeptideforpositronemissiontomographyimagingoftumorvasculature |