Cargando…

Stable topological insulators achieved using high energy electron beams

Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Lukas, Konczykowski, Marcin, Deng, Haiming, Korzhovska, Inna, Begliarbekov, Milan, Chen, Zhiyi, Papalazarou, Evangelos, Marsi, Marino, Perfetti, Luca, Hruban, Andrzej, Wołoś, Agnieszka, Krusin-Elbaum, Lia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792950/
https://www.ncbi.nlm.nih.gov/pubmed/26961901
http://dx.doi.org/10.1038/ncomms10957
_version_ 1782421310611128320
author Zhao, Lukas
Konczykowski, Marcin
Deng, Haiming
Korzhovska, Inna
Begliarbekov, Milan
Chen, Zhiyi
Papalazarou, Evangelos
Marsi, Marino
Perfetti, Luca
Hruban, Andrzej
Wołoś, Agnieszka
Krusin-Elbaum, Lia
author_facet Zhao, Lukas
Konczykowski, Marcin
Deng, Haiming
Korzhovska, Inna
Begliarbekov, Milan
Chen, Zhiyi
Papalazarou, Evangelos
Marsi, Marino
Perfetti, Luca
Hruban, Andrzej
Wołoś, Agnieszka
Krusin-Elbaum, Lia
author_sort Zhao, Lukas
collection PubMed
description Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi(2)Te(3) and Bi(2)Se(3), the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size.
format Online
Article
Text
id pubmed-4792950
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-47929502016-03-21 Stable topological insulators achieved using high energy electron beams Zhao, Lukas Konczykowski, Marcin Deng, Haiming Korzhovska, Inna Begliarbekov, Milan Chen, Zhiyi Papalazarou, Evangelos Marsi, Marino Perfetti, Luca Hruban, Andrzej Wołoś, Agnieszka Krusin-Elbaum, Lia Nat Commun Article Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi(2)Te(3) and Bi(2)Se(3), the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. Nature Publishing Group 2016-03-10 /pmc/articles/PMC4792950/ /pubmed/26961901 http://dx.doi.org/10.1038/ncomms10957 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Zhao, Lukas
Konczykowski, Marcin
Deng, Haiming
Korzhovska, Inna
Begliarbekov, Milan
Chen, Zhiyi
Papalazarou, Evangelos
Marsi, Marino
Perfetti, Luca
Hruban, Andrzej
Wołoś, Agnieszka
Krusin-Elbaum, Lia
Stable topological insulators achieved using high energy electron beams
title Stable topological insulators achieved using high energy electron beams
title_full Stable topological insulators achieved using high energy electron beams
title_fullStr Stable topological insulators achieved using high energy electron beams
title_full_unstemmed Stable topological insulators achieved using high energy electron beams
title_short Stable topological insulators achieved using high energy electron beams
title_sort stable topological insulators achieved using high energy electron beams
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792950/
https://www.ncbi.nlm.nih.gov/pubmed/26961901
http://dx.doi.org/10.1038/ncomms10957
work_keys_str_mv AT zhaolukas stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT konczykowskimarcin stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT denghaiming stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT korzhovskainna stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT begliarbekovmilan stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT chenzhiyi stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT papalazarouevangelos stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT marsimarino stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT perfettiluca stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT hrubanandrzej stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT wołosagnieszka stabletopologicalinsulatorsachievedusinghighenergyelectronbeams
AT krusinelbaumlia stabletopologicalinsulatorsachievedusinghighenergyelectronbeams