Cargando…
Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy
Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793190/ https://www.ncbi.nlm.nih.gov/pubmed/26980052 http://dx.doi.org/10.1038/srep23271 |
Sumario: | Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery. |
---|