Cargando…

A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell

We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetri...

Descripción completa

Detalles Bibliográficos
Autores principales: Livermore, Philip W., Bailey, Lewis M., Hollerbach, Rainer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793234/
https://www.ncbi.nlm.nih.gov/pubmed/26980289
http://dx.doi.org/10.1038/srep22812
Descripción
Sumario:We investigate how the choice of either no-slip or stress-free boundary conditions affects numerical models of rapidly rotating flow in Earth’s core by computing solutions of the weakly-viscous magnetostrophic equations within a spherical shell, driven by a prescribed body force. For non-axisymmetric solutions, we show that models with either choice of boundary condition have thin boundary layers of depth E(1/2), where E is the Ekman number, and a free-stream flow that converges to the formally inviscid solution. At Earth-like values of viscosity, the boundary layer thickness is approximately 1 m, for either choice of condition. In contrast, the axisymmetric flows depend crucially on the choice of boundary condition, in both their structure and magnitude (either E(−1/2) or E(−1)). These very large zonal flows arise from requiring viscosity to balance residual axisymmetric torques. We demonstrate that switching the mechanical boundary conditions can cause a distinct change of structure of the flow, including a sign-change close to the equator, even at asymptotically low viscosity. Thus implementation of stress-free boundary conditions, compared with no-slip conditions, may yield qualitatively different dynamics in weakly-viscous magnetostrophic models of Earth’s core. We further show that convergence of the free-stream flow to its asymptotic structure requires E ≤ 10(−5).