Cargando…
DASPfind: new efficient method to predict drug–target interactions
BACKGROUND: Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient computational methods for the accurate prediction of potential DTIs. To-date,...
Autores principales: | Ba-alawi, Wail, Soufan, Othman, Essack, Magbubah, Kalnis, Panos, Bajic, Vladimir B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793623/ https://www.ncbi.nlm.nih.gov/pubmed/26985240 http://dx.doi.org/10.1186/s13321-016-0128-4 |
Ejemplares similares
-
DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning
por: Soufan, Othman, et al.
Publicado: (2016) -
Mining Chemical Activity Status from High-Throughput Screening Assays
por: Soufan, Othman, et al.
Publicado: (2015) -
DPubChem: a web tool for QSAR modeling and high-throughput virtual screening
por: Soufan, Othman, et al.
Publicado: (2018) -
DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm
por: Soufan, Othman, et al.
Publicado: (2015) -
Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities
por: Thafar, Maha, et al.
Publicado: (2019)