Cargando…
Micro-computed tomography scan and virtual histological slide data for the land planarian Obama otavioi (Platyhelminthes)
BACKGROUND: We investigated whether images obtained through X-ray micro-computed tomography (μCT) can be used in conjunction with traditional methods for morphological studies of soft-bodied land planarians. μCT is non-invasive and provides true-to-scale three-dimensional imagery at high resolution....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4793757/ https://www.ncbi.nlm.nih.gov/pubmed/26985364 http://dx.doi.org/10.1186/s13742-016-0119-4 |
Sumario: | BACKGROUND: We investigated whether images obtained through X-ray micro-computed tomography (μCT) can be used in conjunction with traditional methods for morphological studies of soft-bodied land planarians. μCT is non-invasive and provides true-to-scale three-dimensional imagery at high resolution. We compared μCT-based images of a recently described land planarian species of Obama otavioi (Platyhelminthes) with those obtained from light microphotography of histological sections, most of which were also digitized at high magnification. FINDINGS: The specimens studied were collected in 2012. Subsequent μCT-based images of the stained body of a paratype show nearly all morphological features provided by traditional histology, with the exception of particularly minute structures, smaller than 5 μm, such as the sensory pits and single muscle fibers, which are best visible on traditional histological sections. Because the technique is non-destructive, the scanned specimen is preserved without damage. The raw and derivative μCT data and virtual histological sections are freely available in GigaDB. CONCLUSIONS: The μCT datasets of these stained soft-bodied organisms reveal images of external and internal structures that support previous taxonomic studies. This technique can be particularly important for non-destructively revealing internal details of whole museum specimens at a faster rate than histology alone. High-resolution virtual histological slides also allow further searches for new, previously unstudied morphological features. The use of X-ray equipment with higher resolution can enable smaller sensory organ and muscle fiber details to be seen. The image sets, μCT-based images and digitized histological slides can be disseminated without the constraints of specimen loans. |
---|