Cargando…

Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability

The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task r...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckert, Nathanial R., Poston, Brach, Riley, Zachary A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794147/
https://www.ncbi.nlm.nih.gov/pubmed/26981863
http://dx.doi.org/10.1371/journal.pone.0151520
_version_ 1782421440554860544
author Eckert, Nathanial R.
Poston, Brach
Riley, Zachary A.
author_facet Eckert, Nathanial R.
Poston, Brach
Riley, Zachary A.
author_sort Eckert, Nathanial R.
collection PubMed
description The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task.
format Online
Article
Text
id pubmed-4794147
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-47941472016-03-23 Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability Eckert, Nathanial R. Poston, Brach Riley, Zachary A. PLoS One Research Article The silent period induced by cutaneous electrical stimulation of the digits has been shown to be task-dependent, at least in the grasping muscles of the hand. However, it is unknown if the cutaneous silent period is adaptable throughout muscles of the entire upper limb, in particular when the task requirements are substantially altered. The purpose of the present study was to examine the characteristics of the cutaneous silent period in several upper limb muscles when introducing increased whole-body instability. The cutaneous silent period was evoked in 10 healthy individuals with electrical stimulation of digit II of the right hand when the subjects were seated, standing, or standing on a wobble board while maintaining a background elbow extension contraction with the triceps brachii of ~5% of maximal voluntary contraction (MVC) strength. The first excitatory response (E1), first inhibitory response (CSP), and second excitatory response (E2) were quantified as the percent change from baseline and by their individual durations. The results showed that the level of CSP suppression was lessened (47.7 ± 7.7% to 33.8 ± 13.2% of baseline, p = 0.019) and the duration of the CSP inhibition decreased (p = 0.021) in the triceps brachii when comparing the seated and wobble board tasks. For the wobble board task the amount of cutaneous afferent inhibition of EMG activity in the triceps brachii decreased; which is proposed to be due to differential weighting of cutaneous feedback relative to the corticospinal drive, most likely due to presynaptic inhibition, to meet the demands of the unstable task. Public Library of Science 2016-03-16 /pmc/articles/PMC4794147/ /pubmed/26981863 http://dx.doi.org/10.1371/journal.pone.0151520 Text en © 2016 Eckert et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Eckert, Nathanial R.
Poston, Brach
Riley, Zachary A.
Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title_full Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title_fullStr Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title_full_unstemmed Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title_short Modulation of the Cutaneous Silent Period in the Upper-Limb with Whole-Body Instability
title_sort modulation of the cutaneous silent period in the upper-limb with whole-body instability
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794147/
https://www.ncbi.nlm.nih.gov/pubmed/26981863
http://dx.doi.org/10.1371/journal.pone.0151520
work_keys_str_mv AT eckertnathanialr modulationofthecutaneoussilentperiodintheupperlimbwithwholebodyinstability
AT postonbrach modulationofthecutaneoussilentperiodintheupperlimbwithwholebodyinstability
AT rileyzacharya modulationofthecutaneoussilentperiodintheupperlimbwithwholebodyinstability