Cargando…
Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis
Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794234/ https://www.ncbi.nlm.nih.gov/pubmed/26981861 http://dx.doi.org/10.1371/journal.pbio.1002404 |
_version_ | 1782421460148551680 |
---|---|
author | Tweedy, Luke Knecht, David A. Mackay, Gillian M. Insall, Robert H. |
author_facet | Tweedy, Luke Knecht, David A. Mackay, Gillian M. Insall, Robert H. |
author_sort | Tweedy, Luke |
collection | PubMed |
description | Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine. |
format | Online Article Text |
id | pubmed-4794234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-47942342016-03-23 Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis Tweedy, Luke Knecht, David A. Mackay, Gillian M. Insall, Robert H. PLoS Biol Research Article Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine. Public Library of Science 2016-03-16 /pmc/articles/PMC4794234/ /pubmed/26981861 http://dx.doi.org/10.1371/journal.pbio.1002404 Text en © 2016 Tweedy et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Tweedy, Luke Knecht, David A. Mackay, Gillian M. Insall, Robert H. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title | Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title_full | Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title_fullStr | Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title_full_unstemmed | Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title_short | Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis |
title_sort | self-generated chemoattractant gradients: attractant depletion extends the range and robustness of chemotaxis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794234/ https://www.ncbi.nlm.nih.gov/pubmed/26981861 http://dx.doi.org/10.1371/journal.pbio.1002404 |
work_keys_str_mv | AT tweedyluke selfgeneratedchemoattractantgradientsattractantdepletionextendstherangeandrobustnessofchemotaxis AT knechtdavida selfgeneratedchemoattractantgradientsattractantdepletionextendstherangeandrobustnessofchemotaxis AT mackaygillianm selfgeneratedchemoattractantgradientsattractantdepletionextendstherangeandrobustnessofchemotaxis AT insallroberth selfgeneratedchemoattractantgradientsattractantdepletionextendstherangeandrobustnessofchemotaxis |