Cargando…

Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection

In this study, we have developed an efficient method based on single-stranded DNA (ssDNA) aptamers along with silica fluorescence nanoparticles for bacteria Salmonella typhimurium detection. Carboxyl-modified Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (RuBPY)-doped silica nanoparticles (C...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qiu-Yue, Kang, Yan-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794472/
https://www.ncbi.nlm.nih.gov/pubmed/26983430
http://dx.doi.org/10.1186/s11671-016-1359-z
Descripción
Sumario:In this study, we have developed an efficient method based on single-stranded DNA (ssDNA) aptamers along with silica fluorescence nanoparticles for bacteria Salmonella typhimurium detection. Carboxyl-modified Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (RuBPY)-doped silica nanoparticles (COOH-FSiNPs) were prepared using reverse microemulsion method, and the streptavidin was conjugated to the surface of the prepared COOH-FSiNPs. The bacteria S. typhimurium was incubated with a specific ssDNA biotin-labeled aptamer, and then the aptamer-bacteria conjugates were treated with the synthetic streptavidin-conjugated silica fluorescence nanoprobes (SA-FSiNPs). The results under fluorescence microscopy show that SA-FSiNPs can be applied effectively for the labeling of bacteria S. typhimurium with great photostable property. To further verify the specificity of SA-FSiNPs out of multiple bacterial conditions, variant concentrations of bacteria mixtures composed of bacteria S. typhimurium, Escherichia coli, and Bacillus subtilis were treated with SA-FSiNPs. In addition, the feasibility of SA-FSiNPs for bacteria S. typhimurium detection in chicken samples was assessed. All the results display that the established aptamer-based nanoprobes exhibit the superiority for bacteria S. typhimurium detection, which is referentially significant for wider application prospects in pathogen detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1359-z) contains supplementary material, which is available to authorized users.