Cargando…

Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project

Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assist...

Descripción completa

Detalles Bibliográficos
Autores principales: Benammar Elgaaied, Amel, Cascio, Donato, Bruno, Salvatore, Ciaccio, Maria Cristina, Cipolla, Marco, Fauci, Alessandro, Morgante, Rossella, Taormina, Vincenzo, Gorgi, Yousr, Marrakchi Triki, Raja, Ben Ahmed, Melika, Louzir, Hechmi, Yalaoui, Sadok, Imene, Sfar, Issaoui, Yassine, Abidi, Ahmed, Ammar, Myriam, Bedhiafi, Walid, Ben Fraj, Oussama, Bouhaha, Rym, Hamdi, Khouloud, Soumaya, Koudhi, Neili, Bilel, Asma, Gati, Lucchese, Mariano, Catanzaro, Maria, Barbara, Vincenza, Brusca, Ignazio, Fregapane, Maria, Amato, Gaetano, Friscia, Giuseppe, Neila, Trai, Turkia, Souayeh, Youssra, Haouami, Rekik, Raja, Bouokez, Hayet, Vasile Simone, Maria, Fauci, Francesco, Raso, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794569/
https://www.ncbi.nlm.nih.gov/pubmed/27042658
http://dx.doi.org/10.1155/2016/2073076
_version_ 1782421490556207104
author Benammar Elgaaied, Amel
Cascio, Donato
Bruno, Salvatore
Ciaccio, Maria Cristina
Cipolla, Marco
Fauci, Alessandro
Morgante, Rossella
Taormina, Vincenzo
Gorgi, Yousr
Marrakchi Triki, Raja
Ben Ahmed, Melika
Louzir, Hechmi
Yalaoui, Sadok
Imene, Sfar
Issaoui, Yassine
Abidi, Ahmed
Ammar, Myriam
Bedhiafi, Walid
Ben Fraj, Oussama
Bouhaha, Rym
Hamdi, Khouloud
Soumaya, Koudhi
Neili, Bilel
Asma, Gati
Lucchese, Mariano
Catanzaro, Maria
Barbara, Vincenza
Brusca, Ignazio
Fregapane, Maria
Amato, Gaetano
Friscia, Giuseppe
Neila, Trai
Turkia, Souayeh
Youssra, Haouami
Rekik, Raja
Bouokez, Hayet
Vasile Simone, Maria
Fauci, Francesco
Raso, Giuseppe
author_facet Benammar Elgaaied, Amel
Cascio, Donato
Bruno, Salvatore
Ciaccio, Maria Cristina
Cipolla, Marco
Fauci, Alessandro
Morgante, Rossella
Taormina, Vincenzo
Gorgi, Yousr
Marrakchi Triki, Raja
Ben Ahmed, Melika
Louzir, Hechmi
Yalaoui, Sadok
Imene, Sfar
Issaoui, Yassine
Abidi, Ahmed
Ammar, Myriam
Bedhiafi, Walid
Ben Fraj, Oussama
Bouhaha, Rym
Hamdi, Khouloud
Soumaya, Koudhi
Neili, Bilel
Asma, Gati
Lucchese, Mariano
Catanzaro, Maria
Barbara, Vincenza
Brusca, Ignazio
Fregapane, Maria
Amato, Gaetano
Friscia, Giuseppe
Neila, Trai
Turkia, Souayeh
Youssra, Haouami
Rekik, Raja
Bouokez, Hayet
Vasile Simone, Maria
Fauci, Francesco
Raso, Giuseppe
author_sort Benammar Elgaaied, Amel
collection PubMed
description Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of a CAD (Computer Aided Detection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%).
format Online
Article
Text
id pubmed-4794569
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-47945692016-04-03 Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project Benammar Elgaaied, Amel Cascio, Donato Bruno, Salvatore Ciaccio, Maria Cristina Cipolla, Marco Fauci, Alessandro Morgante, Rossella Taormina, Vincenzo Gorgi, Yousr Marrakchi Triki, Raja Ben Ahmed, Melika Louzir, Hechmi Yalaoui, Sadok Imene, Sfar Issaoui, Yassine Abidi, Ahmed Ammar, Myriam Bedhiafi, Walid Ben Fraj, Oussama Bouhaha, Rym Hamdi, Khouloud Soumaya, Koudhi Neili, Bilel Asma, Gati Lucchese, Mariano Catanzaro, Maria Barbara, Vincenza Brusca, Ignazio Fregapane, Maria Amato, Gaetano Friscia, Giuseppe Neila, Trai Turkia, Souayeh Youssra, Haouami Rekik, Raja Bouokez, Hayet Vasile Simone, Maria Fauci, Francesco Raso, Giuseppe Biomed Res Int Research Article Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of a CAD (Computer Aided Detection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%). Hindawi Publishing Corporation 2016 2016-03-03 /pmc/articles/PMC4794569/ /pubmed/27042658 http://dx.doi.org/10.1155/2016/2073076 Text en Copyright © 2016 Amel Benammar Elgaaied et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Benammar Elgaaied, Amel
Cascio, Donato
Bruno, Salvatore
Ciaccio, Maria Cristina
Cipolla, Marco
Fauci, Alessandro
Morgante, Rossella
Taormina, Vincenzo
Gorgi, Yousr
Marrakchi Triki, Raja
Ben Ahmed, Melika
Louzir, Hechmi
Yalaoui, Sadok
Imene, Sfar
Issaoui, Yassine
Abidi, Ahmed
Ammar, Myriam
Bedhiafi, Walid
Ben Fraj, Oussama
Bouhaha, Rym
Hamdi, Khouloud
Soumaya, Koudhi
Neili, Bilel
Asma, Gati
Lucchese, Mariano
Catanzaro, Maria
Barbara, Vincenza
Brusca, Ignazio
Fregapane, Maria
Amato, Gaetano
Friscia, Giuseppe
Neila, Trai
Turkia, Souayeh
Youssra, Haouami
Rekik, Raja
Bouokez, Hayet
Vasile Simone, Maria
Fauci, Francesco
Raso, Giuseppe
Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title_full Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title_fullStr Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title_full_unstemmed Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title_short Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
title_sort computer-assisted classification patterns in autoimmune diagnostics: the aida project
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794569/
https://www.ncbi.nlm.nih.gov/pubmed/27042658
http://dx.doi.org/10.1155/2016/2073076
work_keys_str_mv AT benammarelgaaiedamel computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT casciodonato computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT brunosalvatore computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT ciacciomariacristina computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT cipollamarco computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT faucialessandro computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT morganterossella computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT taorminavincenzo computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT gorgiyousr computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT marrakchitrikiraja computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT benahmedmelika computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT louzirhechmi computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT yalaouisadok computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT imenesfar computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT issaouiyassine computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT abidiahmed computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT ammarmyriam computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT bedhiafiwalid computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT benfrajoussama computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT bouhaharym computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT hamdikhouloud computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT soumayakoudhi computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT neilibilel computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT asmagati computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT lucchesemariano computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT catanzaromaria computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT barbaravincenza computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT bruscaignazio computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT fregapanemaria computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT amatogaetano computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT frisciagiuseppe computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT neilatrai computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT turkiasouayeh computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT youssrahaouami computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT rekikraja computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT bouokezhayet computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT vasilesimonemaria computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT faucifrancesco computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject
AT rasogiuseppe computerassistedclassificationpatternsinautoimmunediagnosticstheaidaproject