Cargando…

Vertical Microcavity Organic Light-emitting Field-effect Transistors

Organic light-emitting field-effect transistors (OLEFETs) are regarded as a novel kind of device architecture for fulfilling electrical-pumped organic lasers. However, the realization of OLEFETs with high external quantum efficiency (EQE) and high brightness simultaneously is still a tough task. Mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yongsheng, Lin, Jie, Song, Li, Lu, Qipeng, Zhu, Wanbin, Liu, Xingyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794712/
https://www.ncbi.nlm.nih.gov/pubmed/26986944
http://dx.doi.org/10.1038/srep23210
Descripción
Sumario:Organic light-emitting field-effect transistors (OLEFETs) are regarded as a novel kind of device architecture for fulfilling electrical-pumped organic lasers. However, the realization of OLEFETs with high external quantum efficiency (EQE) and high brightness simultaneously is still a tough task. Moreover, the design of the resonator structure in LED is far from satisfactory. Here, OLEFETs with EQE of 1.5% at the brightness of 2600 cdm(−2), and the corresponding ON/OFF ratio and current efficiency reaches above 10(4) and 3.1 cdA(−1), respectively, were achieved by introducing 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (HAT-CN) as a charge generation layer. Moreover, a vertical microcavity based on distributed Bragg reflector (DBR) and Ag source/drain electrodes is successfully introduced into the high performance OLEFETs, which results in electroluminescent spectrum linewidth narrowing from 96 nm to 6.9 nm. The results manifest the superiority of the vertical microcavity as an optical resonator in OLEFETs, which sheds some light on achieving the electrically pumped organic lasers.