Cargando…
Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-Linear Dependencies
This paper proposes a compressive sensing (CS) method for multi-channel electroencephalogram (EEG) signals in Wireless Body Area Network (WBAN) applications, where the battery life of sensors is limited. For the single EEG channel case, known as the single measurement vector (SMV) problem, the Block...
Autores principales: | Mahrous, Hesham, Ward, Rabab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794742/ https://www.ncbi.nlm.nih.gov/pubmed/26861335 http://dx.doi.org/10.3390/s16020201 |
Ejemplares similares
-
An Energy Efficient Compressed Sensing Framework for the Compression of Electroencephalogram Signals
por: Fauvel, Simon, et al.
Publicado: (2014) -
Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays
por: Qin, Linxia, et al.
Publicado: (2012) -
Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems
por: Duff, I S, et al.
Publicado: (1995) -
On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
por: Jayaraman, Balaji, et al.
Publicado: (2020) -
Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling
por: Kawashima, Issaku, et al.
Publicado: (2017)