Cargando…

Low Plasma Levels of Adiponectin Do Not Explain Acute Respiratory Distress Syndrome Risk: a Prospective Cohort Study of Patients with Severe Sepsis

BACKGROUND: Obesity is associated with the development of acute respiratory distress syndrome (ARDS) in at-risk patients. Low plasma levels of adiponectin, a circulating hormone-like molecule, have been implicated as a possible mechanism for this association. The objective of this study was to deter...

Descripción completa

Detalles Bibliográficos
Autores principales: Palakshappa, Jessica A., Anderson, Brian J., Reilly, John P., Shashaty, Michael G. S., Ueno, Ryo, Wu, Qufei, Ittner, Caroline A. G., Tommasini, Anna, Dunn, Thomas G., Charles, Dudley, Kazi, Altaf, Christie, Jason D., Meyer, Nuala J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4794929/
https://www.ncbi.nlm.nih.gov/pubmed/26984771
http://dx.doi.org/10.1186/s13054-016-1244-2
Descripción
Sumario:BACKGROUND: Obesity is associated with the development of acute respiratory distress syndrome (ARDS) in at-risk patients. Low plasma levels of adiponectin, a circulating hormone-like molecule, have been implicated as a possible mechanism for this association. The objective of this study was to determine the association of plasma adiponectin level at ICU admission with ARDS and 30-day mortality in patients with severe sepsis and septic shock. METHODS: This is a prospective cohort study of patients admitted to the medical ICU at the Hospital of the University of Pennsylvania. Plasma adiponectin was measured at the time of ICU admission. ARDS was defined by Berlin criteria. Multivariable logistic regression was used to determine the association of plasma adiponectin with the development of ARDS and mortality at 30 days. RESULTS: The study included 164 patients. The incidence of ARDS within 5 days of admission was 45 %. The median initial plasma adiponectin level was 7.62 mcg/ml (IQR: 3.87, 14.90) in those without ARDS compared to 8.93 mcg/ml (IQR: 4.60, 18.85) in those developing ARDS. The adjusted odds ratio for ARDS associated with each 5 mcg increase in adiponectin was 1.12 (95 % CI 1.01, 1.25), p-value 0.025). A total of 82 patients (51 %) of the cohort died within 30 days of ICU admission. There was a statistically significant association between adiponectin and mortality in the unadjusted model (OR 1.11, 95 % CI 1.00, 1.23, p-value 0.04) that was no longer significant after adjusting for potential confounders. CONCLUSIONS: In this study, low levels of adiponectin were not associated with an increased risk of ARDS in patients with severe sepsis and septic shock. This argues against low levels of adiponectin as a mechanism explaining the association of obesity with ARDS. At present, it is unclear whether circulating adiponectin is involved in the pathogenesis of ARDS or simply represents an epiphenomenon of other unknown functions of adipose tissue or metabolic alterations in sepsis.