Cargando…

Geographical Detector-Based Identification of the Impact of Major Determinants on Aeolian Desertification Risk

Arid and semi-arid areas in North China are facing the challenge of a rising aeolian desertification risk (ADR) due to the intertwined effects of complex natural processes and intensified anthropogenic activities. An accurate quantitative assessment of the relationship between ADR and its determinan...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Ziqiang, Xu, Xiaoming, Zhang, Hong, Wu, Zhitao, Liu, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795792/
https://www.ncbi.nlm.nih.gov/pubmed/26987114
http://dx.doi.org/10.1371/journal.pone.0151331
Descripción
Sumario:Arid and semi-arid areas in North China are facing the challenge of a rising aeolian desertification risk (ADR) due to the intertwined effects of complex natural processes and intensified anthropogenic activities. An accurate quantitative assessment of the relationship between ADR and its determinants is beneficial for understanding the driving mechanisms of aeolian desertification and for controlling future desertification. Previous studies have failed to quantify the relative role of determinants driving ADR and have been limited in assessing their interactive impacts. In this study, a spatial variance analysis-based geographical detector methodology is used to quantify the effects of geological, physical, and human factors on the occurrence of ADR in an area characterized by mountains and hills in northern China. It is found that soil type, precipitation, and wind velocity are the major determinants of ADR, which implies that geological and physical elements (e.g., soil attribute) and climatic factors (e.g., precipitation and wind velocity) rather than human activities have played a greater role in the incidence of ADR. Particularly, the results show that the interaction of various determinants causes significant non-linearly enhanced impacts on the ADR. The findings of our study will assist local inhabitants and policy makers in developing measures for wind prevention and sand control to mitigate the effects of desertification in the region.