Cargando…

Paracrine and endocrine modes of myostatin action

Myostatin (MSTN) is a secreted signaling molecule that normally acts to limit muscle mass. In adult animals, MSTN is made almost exclusively by skeletal muscle and circulates in the blood. A critical question is whether this circulating MSTN protein can enter the active pool to regulate muscle growt...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Yun-Sil, Huynh, Thanh V., Lee, Se-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Physiological Society 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796182/
https://www.ncbi.nlm.nih.gov/pubmed/26769954
http://dx.doi.org/10.1152/japplphysiol.00874.2015
Descripción
Sumario:Myostatin (MSTN) is a secreted signaling molecule that normally acts to limit muscle mass. In adult animals, MSTN is made almost exclusively by skeletal muscle and circulates in the blood. A critical question is whether this circulating MSTN protein can enter the active pool to regulate muscle growth or whether all of the activity of MSTN results from locally produced protein. Here, we addressed this question in mice by using a Cdx2-Cre transgene in conjunction with a conditional Mstn-flox allele to generate mice in which Mstn was targeted in a regionally restricted manner. Specifically, we generated mosaic mice in which MSTN production was eliminated in posteriorly located muscles but not in anteriorly located muscles, resulting in mice in which circulating levels of MSTN were reduced roughly by half. Analysis of posteriorly located vs. anteriorly located muscles of these mice revealed clear differential effects indicative of an important paracrine role for MSTN in regulating muscle mass. Significant, albeit more subtle, effects consistent with an endocrine mode of MSTN action were also seen in these mice. These findings have important implications not only for the understanding of the physiological control of muscle mass but also for therapeutic strategies to target MSTN to treat patients with muscle loss.