Cargando…
Improved batch correction in untargeted MS-based metabolomics
INTRODUCTION: Batch effects in large untargeted metabolomics experiments are almost unavoidable, especially when sensitive detection techniques like mass spectrometry (MS) are employed. In order to obtain peak intensities that are comparable across all batches, corrections need to be performed. Sinc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796354/ https://www.ncbi.nlm.nih.gov/pubmed/27073351 http://dx.doi.org/10.1007/s11306-016-1015-8 |
_version_ | 1782421759510708224 |
---|---|
author | Wehrens, Ron Hageman, Jos. A. van Eeuwijk, Fred Kooke, Rik Flood, Pádraic J. Wijnker, Erik Keurentjes, Joost J. B. Lommen, Arjen van Eekelen, Henriëtte D. L. M. Hall, Robert D. Mumm, Roland de Vos, Ric C. H. |
author_facet | Wehrens, Ron Hageman, Jos. A. van Eeuwijk, Fred Kooke, Rik Flood, Pádraic J. Wijnker, Erik Keurentjes, Joost J. B. Lommen, Arjen van Eekelen, Henriëtte D. L. M. Hall, Robert D. Mumm, Roland de Vos, Ric C. H. |
author_sort | Wehrens, Ron |
collection | PubMed |
description | INTRODUCTION: Batch effects in large untargeted metabolomics experiments are almost unavoidable, especially when sensitive detection techniques like mass spectrometry (MS) are employed. In order to obtain peak intensities that are comparable across all batches, corrections need to be performed. Since non-detects, i.e., signals with an intensity too low to be detected with certainty, are common in metabolomics studies, the batch correction methods need to take these into account. OBJECTIVES: This paper aims to compare several batch correction methods, and investigates the effect of different strategies for handling non-detects. METHODS: Batch correction methods usually consist of regression models, possibly also accounting for trends within batches. To fit these models quality control samples (QCs), injected at regular intervals, can be used. Also study samples can be used, provided that the injection order is properly randomized. Normalization methods, not using information on batch labels or injection order, can correct for batch effects as well. Introducing two easy-to-use quality criteria, we assess the merits of these batch correction strategies using three large LC–MS and GC–MS data sets of samples from Arabidopsis thaliana. RESULTS: The three data sets have very different characteristics, leading to clearly distinct behaviour of the batch correction strategies studied. Explicit inclusion of information on batch and injection order in general leads to very good corrections; when enough QCs are available, also general normalization approaches perform well. Several approaches are shown to be able to handle non-detects—replacing them with very small numbers such as zero seems the worst of the approaches considered. CONCLUSION: The use of quality control samples for batch correction leads to good results when enough QCs are available. If an experiment is properly set up, batch correction using the study samples usually leads to a similar high-quality correction, but has the advantage that more metabolites are corrected. The strategy for handling non-detects is important: choosing small values like zero can lead to suboptimal batch corrections. |
format | Online Article Text |
id | pubmed-4796354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-47963542016-04-10 Improved batch correction in untargeted MS-based metabolomics Wehrens, Ron Hageman, Jos. A. van Eeuwijk, Fred Kooke, Rik Flood, Pádraic J. Wijnker, Erik Keurentjes, Joost J. B. Lommen, Arjen van Eekelen, Henriëtte D. L. M. Hall, Robert D. Mumm, Roland de Vos, Ric C. H. Metabolomics Original Article INTRODUCTION: Batch effects in large untargeted metabolomics experiments are almost unavoidable, especially when sensitive detection techniques like mass spectrometry (MS) are employed. In order to obtain peak intensities that are comparable across all batches, corrections need to be performed. Since non-detects, i.e., signals with an intensity too low to be detected with certainty, are common in metabolomics studies, the batch correction methods need to take these into account. OBJECTIVES: This paper aims to compare several batch correction methods, and investigates the effect of different strategies for handling non-detects. METHODS: Batch correction methods usually consist of regression models, possibly also accounting for trends within batches. To fit these models quality control samples (QCs), injected at regular intervals, can be used. Also study samples can be used, provided that the injection order is properly randomized. Normalization methods, not using information on batch labels or injection order, can correct for batch effects as well. Introducing two easy-to-use quality criteria, we assess the merits of these batch correction strategies using three large LC–MS and GC–MS data sets of samples from Arabidopsis thaliana. RESULTS: The three data sets have very different characteristics, leading to clearly distinct behaviour of the batch correction strategies studied. Explicit inclusion of information on batch and injection order in general leads to very good corrections; when enough QCs are available, also general normalization approaches perform well. Several approaches are shown to be able to handle non-detects—replacing them with very small numbers such as zero seems the worst of the approaches considered. CONCLUSION: The use of quality control samples for batch correction leads to good results when enough QCs are available. If an experiment is properly set up, batch correction using the study samples usually leads to a similar high-quality correction, but has the advantage that more metabolites are corrected. The strategy for handling non-detects is important: choosing small values like zero can lead to suboptimal batch corrections. Springer US 2016-03-18 2016 /pmc/articles/PMC4796354/ /pubmed/27073351 http://dx.doi.org/10.1007/s11306-016-1015-8 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Wehrens, Ron Hageman, Jos. A. van Eeuwijk, Fred Kooke, Rik Flood, Pádraic J. Wijnker, Erik Keurentjes, Joost J. B. Lommen, Arjen van Eekelen, Henriëtte D. L. M. Hall, Robert D. Mumm, Roland de Vos, Ric C. H. Improved batch correction in untargeted MS-based metabolomics |
title | Improved batch correction in untargeted MS-based metabolomics |
title_full | Improved batch correction in untargeted MS-based metabolomics |
title_fullStr | Improved batch correction in untargeted MS-based metabolomics |
title_full_unstemmed | Improved batch correction in untargeted MS-based metabolomics |
title_short | Improved batch correction in untargeted MS-based metabolomics |
title_sort | improved batch correction in untargeted ms-based metabolomics |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796354/ https://www.ncbi.nlm.nih.gov/pubmed/27073351 http://dx.doi.org/10.1007/s11306-016-1015-8 |
work_keys_str_mv | AT wehrensron improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT hagemanjosa improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT vaneeuwijkfred improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT kookerik improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT floodpadraicj improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT wijnkererik improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT keurentjesjoostjb improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT lommenarjen improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT vaneekelenhenriettedlm improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT hallrobertd improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT mummroland improvedbatchcorrectioninuntargetedmsbasedmetabolomics AT devosricch improvedbatchcorrectioninuntargetedmsbasedmetabolomics |