Cargando…
Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells
Aspirin is a well-known analgesic, anti-inflammatory and antipyretic drug and is recognised as a chemopreventative agent in cardiovascular disease and, more recently, in colorectal cancer. Although several studies indicate that aspirin is capable of reducing the risk of developing cancers, there is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796368/ https://www.ncbi.nlm.nih.gov/pubmed/26704566 http://dx.doi.org/10.1007/s00726-015-2143-6 |
_version_ | 1782421762658533376 |
---|---|
author | Li, Jun Cameron, Gary A. Wallace, Heather M. |
author_facet | Li, Jun Cameron, Gary A. Wallace, Heather M. |
author_sort | Li, Jun |
collection | PubMed |
description | Aspirin is a well-known analgesic, anti-inflammatory and antipyretic drug and is recognised as a chemopreventative agent in cardiovascular disease and, more recently, in colorectal cancer. Although several studies indicate that aspirin is capable of reducing the risk of developing cancers, there is a lack of convincing evidence that aspirin can prevent prostate cancer in man. In this study, aspirin was shown to be an effective inhibitor of the growth of human prostate cancer cells. In order to investigate the link between polyamine catabolism and the effects of aspirin we used a “Tet off” system that induced the activity of spermidine/spermine N(1)-acetyltransferase (SSAT) in human prostate cancer cells (LNCap). Treatment with aspirin was found to decrease induced SSAT activity in these cells. A negative correlation was observed between increased polyamine catabolism via increased SSAT activity and the sensitivity to aspirin. In the presence of increased SSAT activity high amounts of N(1)-acetylspermidine and putrescine were observed. These cells were also found to grow more slowly than the non-induced cells. The results indicate that SSAT and its related polyamine metabolism may play a key role in sensitivity of cancer cells to aspirin and possibly other NSAIDs and this may have implications for the development of novel chemopreventative agents. |
format | Online Article Text |
id | pubmed-4796368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-47963682016-04-10 Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells Li, Jun Cameron, Gary A. Wallace, Heather M. Amino Acids Original Article Aspirin is a well-known analgesic, anti-inflammatory and antipyretic drug and is recognised as a chemopreventative agent in cardiovascular disease and, more recently, in colorectal cancer. Although several studies indicate that aspirin is capable of reducing the risk of developing cancers, there is a lack of convincing evidence that aspirin can prevent prostate cancer in man. In this study, aspirin was shown to be an effective inhibitor of the growth of human prostate cancer cells. In order to investigate the link between polyamine catabolism and the effects of aspirin we used a “Tet off” system that induced the activity of spermidine/spermine N(1)-acetyltransferase (SSAT) in human prostate cancer cells (LNCap). Treatment with aspirin was found to decrease induced SSAT activity in these cells. A negative correlation was observed between increased polyamine catabolism via increased SSAT activity and the sensitivity to aspirin. In the presence of increased SSAT activity high amounts of N(1)-acetylspermidine and putrescine were observed. These cells were also found to grow more slowly than the non-induced cells. The results indicate that SSAT and its related polyamine metabolism may play a key role in sensitivity of cancer cells to aspirin and possibly other NSAIDs and this may have implications for the development of novel chemopreventative agents. Springer Vienna 2015-12-24 2016 /pmc/articles/PMC4796368/ /pubmed/26704566 http://dx.doi.org/10.1007/s00726-015-2143-6 Text en © The Author(s) 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Li, Jun Cameron, Gary A. Wallace, Heather M. Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title | Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title_full | Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title_fullStr | Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title_full_unstemmed | Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title_short | Decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
title_sort | decreased sensitivity to aspirin is associated with altered polyamine metabolism in human prostate cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796368/ https://www.ncbi.nlm.nih.gov/pubmed/26704566 http://dx.doi.org/10.1007/s00726-015-2143-6 |
work_keys_str_mv | AT lijun decreasedsensitivitytoaspirinisassociatedwithalteredpolyaminemetabolisminhumanprostatecancercells AT camerongarya decreasedsensitivitytoaspirinisassociatedwithalteredpolyaminemetabolisminhumanprostatecancercells AT wallaceheatherm decreasedsensitivitytoaspirinisassociatedwithalteredpolyaminemetabolisminhumanprostatecancercells |