Cargando…
Extrapolative prediction using physically-based QSAR
Surflex-QMOD integrates chemical structure and activity data to produce physically-realistic models for binding affinity prediction . Here, we apply QMOD to a 3D-QSAR benchmark dataset and show broad applicability to a diverse set of targets. Testing new ligands within the QMOD model employs automat...
Autores principales: | Cleves, Ann E., Jain, Ajay N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796382/ https://www.ncbi.nlm.nih.gov/pubmed/26860112 http://dx.doi.org/10.1007/s10822-016-9896-1 |
Ejemplares similares
-
Surflex-QMOD: physically meaningful QSAR
por: Steudle, Alexander, et al.
Publicado: (2014) -
Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock
por: Cleves, Ann E., et al.
Publicado: (2015) -
QSAR analysis and data extrapolation among mammals in a series of aliphatic alcohols.
por: Tichý, M, et al.
Publicado: (1985) -
Quantitative surface field analysis: learning causal models to predict ligand binding affinity and pose
por: Cleves, Ann E., et al.
Publicado: (2018) -
Electrostatic-field and surface-shape similarity for virtual screening and pose prediction
por: Cleves, Ann E., et al.
Publicado: (2019)