Cargando…
Multiscale method for modeling binding phenomena involving large objects: application to kinesin motor domains motion along microtubules
Many biological phenomena involve the binding of proteins to a large object. Because the electrostatic forces that guide binding act over large distances, truncating the size of the system to facilitate computational modeling frequently yields inaccurate results. Our multiscale approach implements a...
Autores principales: | Li, Lin, Alper, Joshua, Alexov, Emil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4796874/ https://www.ncbi.nlm.nih.gov/pubmed/26988596 http://dx.doi.org/10.1038/srep23249 |
Ejemplares similares
-
E-hooks provide guidance and a soft landing for the microtubule binding domain of dynein
por: Tajielyato, Nayere, et al.
Publicado: (2018) -
Kinesin-binding protein remodels the kinesin motor to prevent microtubule binding
por: Solon, April L., et al.
Publicado: (2021) -
Processivity vs. Beating: Comparing Cytoplasmic and Axonemal Dynein Microtubule Binding Domain Association with Microtubule
por: Tajielyato, Nayere, et al.
Publicado: (2019) -
Forces and Disease: Electrostatic force differences caused by mutations in kinesin motor domains can distinguish between disease-causing and non-disease-causing mutations
por: Li, Lin, et al.
Publicado: (2017) -
The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips
por: Chen, Xiuzhen, et al.
Publicado: (2023)