Cargando…
Bottom-up GGM algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways or processes
BACKGROUND: Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. RESULTS: A b...
Autores principales: | Kumari, Sapna, Deng, Wenping, Gunasekara, Chathura, Chiang, Vincent, Chen, Huann-sheng, Ma, Hao, Davis, Xin, Wei, Hairong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4797117/ https://www.ncbi.nlm.nih.gov/pubmed/26993098 http://dx.doi.org/10.1186/s12859-016-0981-1 |
Ejemplares similares
-
Recursive random forest algorithm for constructing multilayered hierarchical gene regulatory networks that govern biological pathways
por: Deng, Wenping, et al.
Publicado: (2017) -
Memorandum: improvements of the GGM-EMI facility
por: CERN. Geneva. SPS Experiments Committee
Publicado: (1978) -
TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction
por: Gunasekara, Chathura, et al.
Publicado: (2018) -
FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks
por: Wang, Ting, et al.
Publicado: (2016) -
TF-finder: A software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base
por: Cui, Xiaoqi, et al.
Publicado: (2010)